传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4602

【题解】

对于每组齿轮(u, v)连边,权值为y/x(反向边x/y)

那么直接dfs计算一遍即可。

# include <math.h>
# include <stdio.h>
# include <string.h>
# include <algorithm>
// # include <bits/stdc++.h> using namespace std; typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int M = 5e5 + ;
const int mod = 1e9+; # define RG register
# define ST static int T, n, m;
int head[M], nxt[M], to[M], tot;
ld w[M];
inline void add(int u, int v, ld _w) {
++tot; nxt[tot] = head[u];
head[u] = tot; to[tot] = v; w[tot] = _w;
} bool vis[M];
ld v[M]; inline bool dfs(int x, ld c) {
v[x] = c; vis[x] = ;
for (int i=head[x]; i; i=nxt[i]) {
if(!vis[to[i]]) {
if(dfs(to[i], c*w[i])) return ;
} else {
if(fabs(v[to[i]]-c*w[i]) > 1e-) return ;
}
}
return ;
}
inline void sol() {
memset(head, , sizeof head);
tot = ;
scanf("%d%d", &n, &m);
for (int i=; i<=m; ++i) {
int u, v, x, y; scanf("%d%d%d%d", &u, &v, &x, &y);
add(u, v, (ld)y/x);
add(v, u, (ld)x/y);
}
memset(vis, , sizeof vis);
for (int i=; i<=n; ++i) {
if(vis[i]) continue;
if(dfs(i, )) {
puts("No");
return;
}
}
puts("Yes");
} int main() {
int T; scanf("%d", &T);
for (int i=; i<=T; ++i) {
printf("Case #%d: ", i);
sol();
}
return ;
}

bzoj4602 [Sdoi2016]齿轮的更多相关文章

  1. BZOJ4602 Sdoi2016 齿轮 【带权并查集】*

    BZOJ4602 Sdoi2016 齿轮 Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y.即如果只考虑这两个组 ...

  2. BZOJ4602 SDOI2016齿轮(搜索)

    dfs一遍给每个齿轮随便标个值看是否矛盾就行了. #include<iostream> #include<cstdio> #include<cmath> #incl ...

  3. BZOJ4602:[SDOI2016]齿轮(并查集)

    Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x  : y.即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v ...

  4. [bzoj4602][Sdoi2016]齿轮——dfs

    题目 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y.即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈.传 ...

  5. BZOJ4602: [Sdoi2016]齿轮(并查集 启发式合并)

    题意 题目链接 Sol 和cc的一道题很像啊 对于初始的\(N\)个点,每加一条限制实际上就是合并了两个联通块. 那么我们预处理出\(val[i]\)表示的是\(i\)节点所在的联通块根节点转了\(1 ...

  6. BZOJ4602: [Sdoi2016]齿轮 DFS 逆元

    这道题就是一个DFS,有一篇奶牛题几乎一样.但是这道题卡精度. 这道题网上的另一篇题解是有问题的.取对数这种方法可以被轻松卡.比如1e18 与 (1e9-1)*(1e9+1)取对数根本无法保证不被卡精 ...

  7. [Sdoi2016]齿轮

    4602: [Sdoi2016]齿轮 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 613  Solved: 324 [Submit][Status ...

  8. BZOJ 4602: [Sdoi2016]齿轮 dfs

    4602: [Sdoi2016]齿轮 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4602 Description 现有一个传动系统,包 ...

  9. bzoj 4602: [Sdoi2016]齿轮

    4602: [Sdoi2016]齿轮 Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x  : y.即如果只考虑这两个组合 ...

随机推荐

  1. linux mysql root 忘记密码了,完美解决-费元星站长

    修改MySQL的配置文件(默认为/etc/my.cnf),在[mysqld]下添加一行skip-grant-tables   保存配置文件后,重启MySQL服务 service mysqld rest ...

  2. 【C#】 RBAC 权限框架

    [C#] RBAC 权限框架 一. 名词解释 1. 用户 : 登录的账号, 和角色挂钩,可拥有多个角色 2. 角色 : 账号所属的角色, 和权限挂钩,可拥有多个权限 3. 权限 : 角色拥有的操作权限 ...

  3. 问题:调用 ASP.Net Core WebAPI的HTTP POST方法时,从 [FromBody] 中读取的 MongoDB GeoJsonObjectModel成员总是null

    问题描述: POST/PUT to ASP.Net Core with [FromBody] to a MongoDB GeoJsonObjectModel member is always null ...

  4. QSS 的选择器

    本文连接地址:http://www.qtdebug.com/QSS-Selector.html 选择器决定了 style sheet 作用于哪些 Widget,QSS 支持 CSS2 定义的所有选择器 ...

  5. 树莓派putty远程登录windows

    刚买树莓派的你,还在为要不要购买昂贵的屏幕而纠结吗?看完本博客学会远程登录,妈妈再也不用担心我的学习... 首先我们要知道树莓派的官方推荐系统是raspbian 很建议安装16年9月份的,其他的总是这 ...

  6. Android之 GPS学习笔记

    ========================================GPS:全球定位系统 GPS由三部分组成:GPS卫星组成的空间部分,若干地面组成的控制站,用户手中的接收机.Androi ...

  7. 关于Oracle

    Oracle初学者必知的100个问题 1. Oracle安装完成后的初始口令?  internal/oracle  sys/change_on_install  system/manager  sco ...

  8. JVM(2)——GC算法和收集器

    一.引入 上篇博客<JVM--简介>中主要介绍了JVM的内存模型,思考一下: 为什么要划分堆.栈.方法区等? 为什么把不同种类的数据信息分别存放? 答案可以分为很多很多条,这里就说一个方面 ...

  9. 【题解】HNOI2008GT考试

    这题好难啊……完全不懂矩阵加速递推的我TAT 这道题目要求我们求出不含不吉利数字的字符串总数,那么我们有dp方程 : dp[i][j](长度为 i 的字符串,最长与不吉利数字前缀相同的后缀长度为 j ...

  10. BZOJ2819 Nim 【dfn序 + lca + 博弈论】

    题目 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略的. ...