POJ 3070

#include "iostream"
#include "cstdio"
using namespace std; class matrix
{
public:
int a[][];
matrix()
{
a[][]=a[][]=a[][]=;
a[][]=;
}
}; matrix multi(matrix a,matrix b)
{
matrix temp;
int i,j,k;
for(i=;i<;i++)
for(j=;j<;j++)
{
temp.a[i][j]=;
for(k=;k<;k++)
temp.a[i][j]+=(a.a[i][k]*b.a[k][j]);
temp.a[i][j]%=;
}
return temp;
} matrix power(int n)
{
matrix temp,s;
temp.a[][]=temp.a[][]=;
temp.a[][]=temp.a[][]=;
while(n!=)
{
if(n%!=)
temp=multi(temp,s);
s=multi(s,s);
n=n/;
}
return temp;
} int main()
{
int n;
while(~scanf("%d",&n)&&(n!=-))
{ matrix t=power(n);
cout<<t.a[][]<<endl;
}
return ;
}

51Nod 1242 大斐波那契数取余

#include "iostream"
#include "cstdio"
using namespace std;
#define MOD 1000000009
#define LL long long
class matrix
{
public:
LL a[][];
matrix()
{
a[][]=a[][]=a[][]=;
a[][]=;
}
}; matrix multi(matrix a,matrix b)
{
matrix temp;
LL i,j,k;
for(i=;i<;i++)
for(j=;j<;j++)
{
temp.a[i][j]=;
for(k=;k<;k++)
temp.a[i][j]+=(a.a[i][k]*b.a[k][j]);
temp.a[i][j]%=MOD;
}
return temp;
} matrix power(LL n)
{
matrix temp,s;
temp.a[][]=temp.a[][]=;
temp.a[][]=temp.a[][]=;
while(n!=)
{
if(n%!=)
temp=multi(temp,s);
s=multi(s,s);
n=n/;
}
return temp;
} int main()
{
LL n;
while(~scanf("%lld",&n)&&(n!=-))
{ matrix t=power(n);
cout<<t.a[][]<<endl;
}
return ;
}

POJ 3070 + 51Nod 1242 大斐波那契数取余的更多相关文章

  1. UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

    大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...

  2. 【51nod 1355】 斐波那契数的最小公倍数

    题目 51nod的数学题都还不错啊 首先直接算显然是没有办法算的,因为\(fib\)的lcm这个东西还是太鬼畜了 我们考虑到\(fib\)数列的一个非常好的性质是\(gcd(fib_i,fib_{j} ...

  3. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

  4. nyoj-655-光棍的yy(大斐波那契数列)

    题目链接 /* 思路: 考察大斐波那契数列 */ import java.util.*; import java.math.*; public class Main{ public static vo ...

  5. YTU 2503: 大斐波那契数列

    2503: 大斐波那契数列 时间限制: 1 Sec  内存限制: 200 MB 提交: 974  解决: 400 题目描述 斐波那契数列,又称黄金比例数列,指的是这样一个数列:0.1.1.2.3.5. ...

  6. Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数

    Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...

  7. DP:斐波纳契数

    题目:输出第 n 个斐波纳契数(Fibonacci) 方法一.简单递归 这个就不说了,小n怡情,大n伤身啊……当n=40的时候,就明显感觉到卡了,不是一般的慢. //输出第n个 Fibonacci 数 ...

  8. 力扣题目汇总(重复N次元素,反转字符串,斐波那契数)

    重复 N 次的元素 1.题目描述 在大小为 2N 的数组 A 中有 N+1 个不同的元素,其中有一个元素重复了 N 次. 返回重复了 N 次的那个元素. 示例 1: 输入:[1,2,3,3] 输出:3 ...

  9. 用x种方式求第n项斐波那契数,99%的人只会第一种

    大家好啊,我们又见面了.听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧.     本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧. 原文链 ...

随机推荐

  1. [Python 3.X]python练习笔记[2]-----用python实现七段数码管显示年月日

    #SevenDigitsDrawV2.py import turtle import time def drawGap(i):#绘制数码管间隔 turtle.penup() turtle.fd(i) ...

  2. golang log

    自带log模块 写入文件 package main import ( "fmt" "log" "os" ) func main(){ log ...

  3. python——pyinstaller生成exe基本使用和遇到的坑

    1.安装 pip install pyinstaller 2.常规操作 在cmd界面(之前安装python或者anaconda的时候正确添加环境变量的话,是可以在cmd界面直接执行pyinstalle ...

  4. MyBatis实例教程--以接口的方式编程

    以接口的方式编程: 只需要修改两个地方即可, 1.mapper.xml(实体类)配置文件, 注意mapper的namespace的名字是mapper对象的完整路径名com.xiamen.mapper. ...

  5. POJ 2082 Terrible Sets(栈)

    Description Let N be the set of all natural numbers {0 , 1 , 2 , . . . }, and R be the set of all re ...

  6. tarball

    环境:Linux系统 命令:tar 关键:tar打包出来的文件有没有进行压缩所得到的文件称谓不同 仅是打包,得到的文件我们称为tarfile 包含压缩,得到的文件我们称为tarball

  7. lintcode-135-数字组合

    135-数字组合 给出一组候选数字(C)和目标数字(T),找到C中所有的组合,使找出的数字和为T.C中的数字可以无限制重复被选取. 例如,给出候选数组[2,3,6,7]和目标数字7,所求的解为: [7 ...

  8. 【EasyNetQ】- 使用Future Publish调度事件

    许多业务流程要求在将来某个日期安排事件.例如,在与客户进行初次销售联系后,我们可能希望在将来的某个时间安排跟进电话.EasyNetQ可以通过其Future Publish功能帮助您实现此功能.例如,这 ...

  9. RadioGroup和GroupBox有什么区别?

    我在RadioGroup中放RadioButton和GroupBox中一样,搞不明白. radiogroup有个item属性都是radio控件,不需要拖控件上去.groupbox需要自己拖控件 分组的 ...

  10. OSCache页面缓存的使用

    完成项目时,为了减少对数据库的频繁操作,引出了缓存,缓存分为以下几种: 1.一级缓存 一级缓存的存储域是session,作用于单个的dao 2.二级缓存 二级缓存的存储域是sessionFactory ...