FFF at Valentine(强连通分量缩点+拓扑排序)
FFF at Valentine
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 730 Accepted Submission(s): 359
Problem Description

At Valentine's eve, Shylock and Lucar were enjoying their time as any other couples. Suddenly, LSH, Boss of FFF Group caught both of them, and locked them into two separate cells of the jail randomly. But as the saying goes: There is always a way out , the lovers made a bet with LSH: if either of them can reach the cell of the other one, then LSH has to let them go.
The jail is formed of several cells and each cell has some special portals connect to a specific cell. One can be transported to the connected cell by the portal, but be transported back is impossible. There will not be a portal connecting a cell and itself, and since the cost of a portal is pretty expensive, LSH would not tolerate the fact that two portals connect exactly the same two cells.
As an enthusiastic person of the FFF group, YOU are quit curious about whether the lovers can survive or not. So you get a map of the jail and decide to figure it out.
Input
∙Input starts with an integer T (T≤120), denoting the number of test cases.
∙For each case,
First line is two number n and m, the total number of cells and portals in the jail.(2≤n≤1000,m≤6000)
Then next m lines each contains two integer u and v, which indicates a portal from u to v.
Output
If the couple can survive, print “I love you my love and our love save us!”
Otherwise, print “Light my fire!”
Sample Input
Sample Output
Source
2017 Multi-University Training Contest - Team 9
//题意:给出一个有向图,问是否任意两点都可以有,至少从其中一点到另一点可行的路径
//题解:首先想到的是好像是问是否是强连通图,然后看清题后发现并不是,求出连通分量缩点后变为有向无环图后,只需要确定,有唯一的拓扑排序的结果即可
# include <cstring>
# include <cstdio>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <sstream>
# include <set>
# include <cmath>
# include <algorithm>
# pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
# define LL long long
# define pr pair
# define mkp make_pair
# define lowbit(x) ((x)&(-x))
# define PI acos(-1.0)
# define INF 0x3f3f3f3f3f3f3f3f
# define eps 1e-
# define MOD inline int scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N = ;
const int M = ;
/**************************/
struct Edge
{
int to;
int nex;
}edge[M*];
int n,m,realm,scc,Ddex;
int hlist[N],hlist2[N];
int dfn[N],low[N],belong[N];
bool instk[N];
stack<int> stk;
int indu[N]; void addedge(int u,int v)
{
edge[realm] = (Edge){v,hlist[u]};
hlist[u]=realm++;
}
void addedge2(int u,int v)
{
edge[realm] = (Edge){v,hlist2[u]};
hlist2[u]=realm++;
} void Init_tarjan()
{
Ddex=;scc=;
memset(dfn,,sizeof(dfn));
memset(instk,,sizeof(instk));
} void tarjan(int u)
{
dfn[u]=low[u]=++Ddex;
stk.push(u); instk[u]=;
for (int i=hlist[u];i!=-;i=edge[i].nex)
{
int v = edge[i].to;
if (!dfn[v])
{
tarjan(v);
low[u] = min(low[u],low[v]);
}
else if (instk[v])
low[u] = min(low[u],dfn[v]);
}
if (dfn[u]==low[u])
{
scc++;
while(){
int p = stk.top(); stk.pop();
instk[p]=;
belong[p]=scc;
if (u==p) break;
}
}
} void build()
{
memset(hlist2,-,sizeof(hlist2));
memset(indu,,sizeof(indu));
for (int i=;i<=n;i++)
{
for (int j=hlist[i];j!=-;j=edge[j].nex)
{
int x = belong[i];
int y = belong[edge[j].to];
if (x!=y)
{
addedge2(x,y);
indu[y]++;
}
}
}
} int topo()
{
queue<int> Q;
for (int i=;i<=scc;i++)
if (indu[i]==) Q.push(i);
if (Q.size()!=) return ;
while (!Q.empty())
{
int u = Q.front(); Q.pop();
for (int i=hlist2[u];i!=-;i=edge[i].nex)
{
int v = edge[i].to;
indu[v]--;
if (indu[v]==)
Q.push(v);
}
if (Q.size()>) return ;
}
return ;
} int main()
{
int T = scan();
while (T--)
{
memset(hlist,-,sizeof(hlist));
realm=;
scanf("%d%d",&n,&m);
for (int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
}
Init_tarjan();
for (int i=;i<=n;i++)
if (!dfn[i])
tarjan(i);
build();//建新图
if (topo())//拓扑
printf("I love you my love and our love save us!\n");
else
printf("Light my fire!\n");
}
return ;
}
FFF at Valentine(强连通分量缩点+拓扑排序)的更多相关文章
- POJ2762 Going from u to v or from v to u?(判定单连通图:强连通分量+缩点+拓扑排序)
这道题要判断一张有向图是否是单连通图,即图中是否任意两点u和v都存在u到v或v到u的路径. 方法是,找出图中所有强连通分量,强连通分量上的点肯定也是满足单连通性的,然后对强连通分量进行缩点,缩点后就变 ...
- POJ 2762 Going from u to v or from v to u? (强连通分量缩点+拓扑排序)
题目链接:http://poj.org/problem?id=2762 题意是 有t组样例,n个点m条有向边,取任意两个点u和v,问u能不能到v 或者v能不能到u,要是可以就输出Yes,否则输出No. ...
- POJ2762 Going from u to v or from v to u? 强连通分量缩点+拓扑排序
题目链接:https://vjudge.net/contest/295959#problem/I 或者 http://poj.org/problem?id=2762 题意:输入多组样例,输入n个点和m ...
- poj 2762 Going from u to v or from v to u?【强连通分量缩点+拓扑排序】
Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15812 ...
- HDU 6165 FFF at Valentine(Tarjan缩点+拓扑排序)
FFF at Valentine Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- HDU 6170 FFF at Valentine(强联通缩点+拓扑排序)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6165 题意:给你一个无环,无重边的有向图,问你任意两点,是否存在路径使得其中一点能到达另一点 解析:强 ...
- poj 2762 Going from u to v or from v to u?(强连通分量+缩点重构图+拓扑排序)
http://poj.org/problem?id=2762 Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: ...
- 【差分约束系统】【强连通分量缩点】【拓扑排序】【DAG最短路】CDOJ1638 红藕香残玉簟秋,轻解罗裳,独上兰舟。
题意: 给定n个点(点权未知)和m条信息:u的权值>=v的权值+w 求点权的极小解和极大解(无解则输出-1) 极小解即每个点的点权可能的最小值 极大解即每个点的点权可能的最大值 题解: 差分约束 ...
- 【强连通分量缩点】【拓扑排序】【dp预处理】CDOJ1640 花自飘零水自流,一种相思,两处闲愁。
题意: 在n个点m条边的有向图上,从1出发的回路最多经过多少个不同的点 可以在一条边上逆行一次 题解: 在同一个强连通分量中,显然可以经过当中的每一个点 因此先将强连通分量缩点,点权为强连通分量的点数 ...
随机推荐
- C++高级进阶 第四季:const具体解释(二) 常量折叠
一.文章来由 const具体解释之二 二.const 取代 #define const最初动机就是取代 #define. const 优于 #define: (1) #define没有类型检查,con ...
- JAVA的IO编程:管道流
掌握线程通讯流(管道流)的使用 管道流的主要作用是可以进行两个线程间的通讯,分为管道输入流(PipeOutputStream)和管道输出流(PipeInputStream). 如果要想进行管道输出,则 ...
- linux如何手动释放linux内存
当在Linux下频繁存取文件后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching.这个问题,貌似有不少人在问,不过都没有看到有什么很好解决的办法.那么我来谈谈这个问题 ...
- 同时安装office2016与visio2016的实现过程
visio 2016安装问题 同时安装office2016与visio2016的实现过程 visio2016 but failed
- 【MyBatis学习15】MyBatis的逆向工程生成代码
1. 什么是逆向工程 mybatis的一个主要的特点就是需要程序员自己编写sql,那么如果表太多的话,难免会很麻烦,所以mybatis官方提供了一个逆向工程,可以针对单表自动生成mybatis执行所需 ...
- js遮罩层弹出显示效果组件化
1.在web开发中经常遇到遮罩层的效果,可以将这种常用方法通用化 function showid(idname){ var isIE = (document.all) ? true : false; ...
- HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)
HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...
- gm picture
console.log("ok") /*var images = require("images");var fs = require("fs&quo ...
- 关于http和rpc的区别(segmentfault上的回答)
问题最近用了谷歌的grpc,所以对rpc和http有一点疑惑,感觉这两个东西功能上是一样的,rpc某个服务监听某一个方法,客户端调用这个方法,返回相应的数据,和http监听某个方法的路由 返回相应的数 ...
- Linux 5 下安装MySQL 5.6(RPM方式)
MySQL在很多领域被广泛使用,尤其是很多互联网企业,诸如腾讯,阿里等等.本文主要介绍在Linux 5下通过rpm方式来安装Mysql,这是比较简单的一种安装方式,具体详见下文. <MySQL权 ...