CodeForces - 990G GCD Counting
Discription
You are given a tree consisting of nn vertices. A number is written on each vertex; the number on vertex ii is equal to aiai.
Let's denote the function g(x,y)g(x,y) as the greatest common divisor of the numbers written on the vertices belonging to the simple path from vertex xx to vertex yy(including these two vertices).
For every integer from 11 to 2⋅1052⋅105 you have to count the number of pairs (x,y)(x,y) (1≤x≤y≤n)(1≤x≤y≤n) such that g(x,y)g(x,y) is equal to this number.
Input
The first line contains one integer nn — the number of vertices (1≤n≤2⋅105)(1≤n≤2⋅105).
The second line contains nn integers a1a1, a2a2, ..., anan (1≤ai≤2⋅105)(1≤ai≤2⋅105) — the numbers written on vertices.
Then n−1n−1 lines follow, each containing two integers xx and yy (1≤x,y≤n,x≠y)(1≤x,y≤n,x≠y)denoting an edge connecting vertex xx with vertex yy. It is guaranteed that these edges form a tree.
Output
For every integer ii from 11 to 2⋅1052⋅105 do the following: if there is no pair (x,y)(x,y) such that x≤yx≤y and g(x,y)=ig(x,y)=i, don't output anything. Otherwise output two integers: iiand the number of aforementioned pairs. You have to consider the values of ii in ascending order.
See the examples for better understanding.
Examples
3
1 2 3
1 2
2 3
1 4
2 1
3 1
6
1 2 4 8 16 32
1 6
6 3
3 4
4 2
6 5
1 6
2 5
4 6
8 1
16 2
32 1
4
9 16 144 6
1 3
2 3
4 3
1 1
2 1
3 1
6 2
9 2
16 2
144 1 震惊,玄学做法竟然跑过了点分治。。。。
很显然,我们可以先求出g是i倍数的点对数ans[i],然后再反演出答案。
求g是i倍数的点对数的时候就调和级数枚举一下倍数,然后并查集一下就ojbk了。。。 虽然这种做法对于随机数据来说非常的强大,但是一遇到精心构造的数据就gg了,这就是窝一开始TLE的原因。。。
比如n个点的点权都是 <=2e5 的约数最多的数,那么上述做法的总运算次数大致是 O((n+m) * div * 反阿科玛函数),就凉凉了。。。 后来我加了一个比较强的剪枝就过了:
当所有点权都是i的倍数的时候,那就不做并查集,而是直接用 C(n+1,2) 减去 >i且是i倍数的J的ans... 感谢出题人不卡之恩2333
#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define pb push_back
const int maxn=200005; inline int read(){
int x=0; char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
return x;
} void W(ll x){ if(x>=10) W(x/10); putchar(x%10+'0');} int n,m,hd[maxn],ne[maxn*2],to[maxn*2],num,cnt[maxn];
int siz[maxn],dfn[maxn],dc,p[maxn],a[maxn];
vector<int> pt[maxn];
ll ans[maxn]; inline void add(int x,int y){ to[++num]=y,ne[num]=hd[x],hd[x]=num;} int getf(int x){ return p[x]==x?x:(p[x]=getf(p[x]));} inline void solve(){
for(int i=2e5,O;i;i--){
dc++,O=0; for(int j=i;j<=2e5;j+=i) O+=cnt[j],ans[i]-=ans[j]; if(O==n){
ans[i]+=n*(ll)(n+1)>>1;
continue;
} for(int j=i;j<=2e5;j+=i){ for(int l=pt[j].size()-1,now;l>=0;l--){
now=pt[j][l]; if(dfn[now]!=dc) dfn[now]=dc,p[now]=now,siz[now]=1,ans[i]++; for(int k=hd[now],fa,fb;k;k=ne[k]) if(dfn[to[k]]==dc){
fa=getf(now),fb=getf(to[k]); if(fa!=fb){
p[fb]=fa,ans[i]+=siz[fa]*(ll)siz[fb];
siz[fa]+=siz[fb];
}
}
}
}
}
} int main(){
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout); n=read();
for(int i=1;i<=n;i++) a[i]=read(),pt[a[i]].pb(i),cnt[a[i]]++; int uu,vv;
for(int i=1;i<n;i++)
uu=read(),vv=read(),add(uu,vv),add(vv,uu); solve(); for(int i=1;i<=2e5;i++) if(ans[i]) W(i),putchar(' '),W(ans[i]),puts("");
return 0;
}
CodeForces - 990G GCD Counting的更多相关文章
- cf 990G - GCD Counting
题意 #include<bits/stdc++.h> #define t 200000 #define MAXN 200100 using namespace std; int n; in ...
- Educational Codeforces Round 45 (Rated for Div. 2) G - GCD Counting
G - GCD Counting 思路:我猜测了一下gcd的个数不会很多,然后我就用dfs回溯的时候用map暴力合并就好啦. 终判被卡了MLE..... 需要每次清空一下子树的map... #inc ...
- CF1101D GCD Counting
题目地址:CF1101D GCD Counting zz的我比赛时以为是树剖或者点分治然后果断放弃了 这道题不能顺着做,而应该从答案入手反着想 由于一个数的质因子实在太少了,因此首先找到每个点的点权的 ...
- Codeforces 954H Path Counting 【DP计数】*
Codeforces 954H Path Counting LINK 题目大意:给你一棵n层的树,第i层的每个节点有a[i]个儿子节点,然后问你树上的简单路径中长度在1~n*2-2之间的每个有多少条 ...
- CF EDU 1101D GCD Counting 树形DP + 质因子分解
CF EDU 1101D GCD Counting 题意 有一颗树,每个节点有一个值,问树上最长链的长度,要求链上的每个节点的GCD值大于1. 思路 由于每个数的质因子很少,题目的数据200000&l ...
- GCD Counting Codeforces - 990G
https://www.luogu.org/problemnew/show/CF990G 耶,又一道好题被我浪费掉了,不会做.. 显然可以反演,在这之前只需对于每个i,统计出有多少(x,y),满足x到 ...
- CodeForces - 1101D:GCD Counting (树分治)
You are given a tree consisting of n vertices. A number is written on each vertex; the number on ver ...
- codeforces 582A. GCD Table 解题报告
题目链接:http://codeforces.com/problemset/problem/582/A 网上很多题解,就不说了,直接贴代码= = 官方题解: http://codeforces.com ...
- D. GCD Counting(树上dp)
题目链接:http://codeforces.com/contest/1101/problem/D 题目大意:给你n个点,每个点都有权值,然后给你边的关系,问你树上的最大距离.(这里的最大距离指的是这 ...
随机推荐
- composer应用
ubentu安装 进入自己的项目根目录cd/path/to/my/project 下载composer curl -s http://getcomposer.org/installer 把这个文件移到 ...
- Codeforces Round #351 (VK Cup 2016 Round 3, Div. 2 Edition) D
D. Bear and Two Paths time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- [bzoj 1143]最长反链二分图最大匹配
Dilworth定理:偏序集能划分成的最少的全序集的个数与最大反链的元素个数相等. 证明:http://www.cnblogs.com/itlqs/p/6636222.html 题目让求的是最大反链的 ...
- 树形DP小结
树形DP1.简介:树是一种数据结构,因为树具有良好的子结构,而恰好DP是从最优子问题更新而来,那么在树上做DP操作就是从树的根节点开始深搜(也就是记忆化搜索),保存每一步的最优结果.tips:树的遍历 ...
- 旋转数组 [ LeetCode ]
原题地址:https://leetcode-cn.com/problems/rotate-array/description/ 给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数. ...
- @RequestBody和@RequestParam、@ResponseBody的使用
一:前沿 针对spring mvc的使用,其实我不怎么熟悉的,因为我只是会用几个常用的注解,其他高深的我都不是很清楚的,而且每次用有时候还需要出查资料的,现在自己记载下吧. 二:内容 (1)这里的@R ...
- spring boot修改内置容器tomcat的服务端口
方式一 在spring boot的web 工程中,可以使用内置的web container.有时需要修改服务端口,可以通过配置类和@Configuration注解来完成. // MyConfigura ...
- [POJ2774]Long Long Message 解题报告
Long Long Message Description The little cat is majoring in physics in the capital of Byterland. A p ...
- POJ2186 (强连通分量缩点后出度为0的分量内点个数)
Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 27820 Accepted: 11208 De ...
- kuangbin带你飞 后缀数组 题解
2份模板 DC3 . 空间复杂度O3N 时间复杂度On #define F(x) ((x) / 3 + ((x) % 3 == 1 ? 0 : tb)) #define G(x) ((x) < ...