CodeForces - 990G GCD Counting
Discription
You are given a tree consisting of nn vertices. A number is written on each vertex; the number on vertex ii is equal to aiai.
Let's denote the function g(x,y)g(x,y) as the greatest common divisor of the numbers written on the vertices belonging to the simple path from vertex xx to vertex yy(including these two vertices).
For every integer from 11 to 2⋅1052⋅105 you have to count the number of pairs (x,y)(x,y) (1≤x≤y≤n)(1≤x≤y≤n) such that g(x,y)g(x,y) is equal to this number.
Input
The first line contains one integer nn — the number of vertices (1≤n≤2⋅105)(1≤n≤2⋅105).
The second line contains nn integers a1a1, a2a2, ..., anan (1≤ai≤2⋅105)(1≤ai≤2⋅105) — the numbers written on vertices.
Then n−1n−1 lines follow, each containing two integers xx and yy (1≤x,y≤n,x≠y)(1≤x,y≤n,x≠y)denoting an edge connecting vertex xx with vertex yy. It is guaranteed that these edges form a tree.
Output
For every integer ii from 11 to 2⋅1052⋅105 do the following: if there is no pair (x,y)(x,y) such that x≤yx≤y and g(x,y)=ig(x,y)=i, don't output anything. Otherwise output two integers: iiand the number of aforementioned pairs. You have to consider the values of ii in ascending order.
See the examples for better understanding.
Examples
3
1 2 3
1 2
2 3
1 4
2 1
3 1
6
1 2 4 8 16 32
1 6
6 3
3 4
4 2
6 5
1 6
2 5
4 6
8 1
16 2
32 1
4
9 16 144 6
1 3
2 3
4 3
1 1
2 1
3 1
6 2
9 2
16 2
144 1 震惊,玄学做法竟然跑过了点分治。。。。
很显然,我们可以先求出g是i倍数的点对数ans[i],然后再反演出答案。
求g是i倍数的点对数的时候就调和级数枚举一下倍数,然后并查集一下就ojbk了。。。 虽然这种做法对于随机数据来说非常的强大,但是一遇到精心构造的数据就gg了,这就是窝一开始TLE的原因。。。
比如n个点的点权都是 <=2e5 的约数最多的数,那么上述做法的总运算次数大致是 O((n+m) * div * 反阿科玛函数),就凉凉了。。。 后来我加了一个比较强的剪枝就过了:
当所有点权都是i的倍数的时候,那就不做并查集,而是直接用 C(n+1,2) 减去 >i且是i倍数的J的ans... 感谢出题人不卡之恩2333
#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define pb push_back
const int maxn=200005; inline int read(){
int x=0; char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
return x;
} void W(ll x){ if(x>=10) W(x/10); putchar(x%10+'0');} int n,m,hd[maxn],ne[maxn*2],to[maxn*2],num,cnt[maxn];
int siz[maxn],dfn[maxn],dc,p[maxn],a[maxn];
vector<int> pt[maxn];
ll ans[maxn]; inline void add(int x,int y){ to[++num]=y,ne[num]=hd[x],hd[x]=num;} int getf(int x){ return p[x]==x?x:(p[x]=getf(p[x]));} inline void solve(){
for(int i=2e5,O;i;i--){
dc++,O=0; for(int j=i;j<=2e5;j+=i) O+=cnt[j],ans[i]-=ans[j]; if(O==n){
ans[i]+=n*(ll)(n+1)>>1;
continue;
} for(int j=i;j<=2e5;j+=i){ for(int l=pt[j].size()-1,now;l>=0;l--){
now=pt[j][l]; if(dfn[now]!=dc) dfn[now]=dc,p[now]=now,siz[now]=1,ans[i]++; for(int k=hd[now],fa,fb;k;k=ne[k]) if(dfn[to[k]]==dc){
fa=getf(now),fb=getf(to[k]); if(fa!=fb){
p[fb]=fa,ans[i]+=siz[fa]*(ll)siz[fb];
siz[fa]+=siz[fb];
}
}
}
}
}
} int main(){
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout); n=read();
for(int i=1;i<=n;i++) a[i]=read(),pt[a[i]].pb(i),cnt[a[i]]++; int uu,vv;
for(int i=1;i<n;i++)
uu=read(),vv=read(),add(uu,vv),add(vv,uu); solve(); for(int i=1;i<=2e5;i++) if(ans[i]) W(i),putchar(' '),W(ans[i]),puts("");
return 0;
}
CodeForces - 990G GCD Counting的更多相关文章
- cf 990G - GCD Counting
题意 #include<bits/stdc++.h> #define t 200000 #define MAXN 200100 using namespace std; int n; in ...
- Educational Codeforces Round 45 (Rated for Div. 2) G - GCD Counting
G - GCD Counting 思路:我猜测了一下gcd的个数不会很多,然后我就用dfs回溯的时候用map暴力合并就好啦. 终判被卡了MLE..... 需要每次清空一下子树的map... #inc ...
- CF1101D GCD Counting
题目地址:CF1101D GCD Counting zz的我比赛时以为是树剖或者点分治然后果断放弃了 这道题不能顺着做,而应该从答案入手反着想 由于一个数的质因子实在太少了,因此首先找到每个点的点权的 ...
- Codeforces 954H Path Counting 【DP计数】*
Codeforces 954H Path Counting LINK 题目大意:给你一棵n层的树,第i层的每个节点有a[i]个儿子节点,然后问你树上的简单路径中长度在1~n*2-2之间的每个有多少条 ...
- CF EDU 1101D GCD Counting 树形DP + 质因子分解
CF EDU 1101D GCD Counting 题意 有一颗树,每个节点有一个值,问树上最长链的长度,要求链上的每个节点的GCD值大于1. 思路 由于每个数的质因子很少,题目的数据200000&l ...
- GCD Counting Codeforces - 990G
https://www.luogu.org/problemnew/show/CF990G 耶,又一道好题被我浪费掉了,不会做.. 显然可以反演,在这之前只需对于每个i,统计出有多少(x,y),满足x到 ...
- CodeForces - 1101D:GCD Counting (树分治)
You are given a tree consisting of n vertices. A number is written on each vertex; the number on ver ...
- codeforces 582A. GCD Table 解题报告
题目链接:http://codeforces.com/problemset/problem/582/A 网上很多题解,就不说了,直接贴代码= = 官方题解: http://codeforces.com ...
- D. GCD Counting(树上dp)
题目链接:http://codeforces.com/contest/1101/problem/D 题目大意:给你n个点,每个点都有权值,然后给你边的关系,问你树上的最大距离.(这里的最大距离指的是这 ...
随机推荐
- 【BZOJ 1901】Zju2112 Dynamic Rankings &&【COGS 257】动态排名系统 树状数组套线段树
外面是树状数组,里面是动态开点线段树,对于查询我们先把有关点找出来,然后一起在线段树上行走,这样就是单个O(log2)的了 #include <cstdio> #include <v ...
- POJ1733:Parity Game(离散化+带权并查集)
Parity Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12853 Accepted: 4957 题目链接 ...
- 状压DP初识~~炮兵阵地
炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 31718 Accepted: 12253 Descriptio ...
- scrapy 为每个pipeline配置spider
在settings.py里面配置pipeline,这里的配置的pipeline会作用于所有的spider,我们可以为每一个spider配置不同的pipeline, 设置 Spider 的 custom ...
- SLF4J 与Log4J
为什么要使用SLF4J而不是Log4J 每一个Java程序员都知道日志对于任何一个Java应用程序,尤其是服务端程序是至关重要的,而很多程序员也已经熟悉各种不同的日志库如java.util.loggi ...
- im4java学习----查看文档和test用例
im4java下载地址:http://sourceforge.net/projects/im4java/files/(谷歌搜索出来的第一个官方地址打不开) 我们需要下载bin和src 这2个压缩包. ...
- CORS服务端跨域
跨域,通常情况下是说在两个不通过的域名下面无法进行正常的通信,或者说是无法获取其他域名下面的数据,这个主要的原因是,浏览器出于安全问题的考虑,采用了同源策略,通过浏览器对JS的限制,防止恶意用户获取非 ...
- iOS 快速框架搭建项目
项目目录 Pod第三方 gitHub地址 https://github.com/henusjj/Basic-project-framework
- SSM:spring+springmvc+mybatis框架中的XML配置文件功能详细解释
这几天一直在整合SSM框架,虽然网上有很多已经整合好的,但是对于里面的配置文件并没有进行过多的说明,很多人知其然不知其所以然,经过几天的搜索和整理,今天总算对其中的XML配置文件有了一定的了解,所以拿 ...
- IDEA新建时选项没有java class问题
解决办法: 点击你的project F4打开project stucture 点击左边的module 点击右边的source后添加src就可以了 添加的src就是源码可以放置的地址