题目传送门

跳蚤

题目描述

Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。

比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。

当确定N和M后,显然一共有$M^N$张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。

输入输出格式

输入格式:

输入文件有且仅有一行,包括用空格分开的两个整数N和M。

输出格式:

输出文件有且仅有一行,即可以完成任务的卡片数。

$1\leq N\leq M\leq 10^8$且$M^N\leq10^{16}$

输入输出样例

输入样例#1:

2 4
输出样例#1:

12

说明

这12张卡片分别是:

(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4),

(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4)


  分析:

  大力推结论的数学题。

  大部分人好像都是用莫比乌斯函数做的,这里博主用的是大力推结论+容斥原理。

  推这道题的过程是真的有点意思,一步一步来:

  首先,我们要知道能跳到目标位置的情况是什么。这个用裴蜀定理可以推出,向某一方向可以跳的距离一定是使用了的数字的最大公约数的倍数。那么我们也就知道了,能跳到左边一个单位的情况就是$n+1$个数字中至少有一对互质的数。

  但是我们直接求这种情况似乎太难了,不如反过来,用所有情况数减去不能跳到的情况。那么我们就要想,怎么去计算不能跳到的情况。

  显然,选的数的最大公约数一定要大于$1$。而且题目又限定了第$n+1$个数字是$m$,那么我们就把所有的$m$的质因数拿来操作。

  怎么操作呢?先选取一个质因数,然后把所有$\leq m$的包含这个质因数的数的个数求出,然后用总情况数减去这些数构成的卡片的情况数。

  这样貌似就已经可以了,但是博主交上去,$20pts$。。。

  为什么?因为会减去重复的情况。这里举个例:$n=2,m=12$,$m$的质因数有$2,3$。其中取$2$操作时有这种情况:$6,6,12$,而取$3$操作时也有这种情况!

  所以这里需要用容斥原理把重复情况加回来。

  Code:

//It is made by HolseLee on 19th Oct 2018
//Luogu.org P2231
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long ll;
const int N=1e6+;
ll n,m,ans,tot,q[N],g[N],top,lim,cnt; void ready(ll ka)
{
for(ll i=; i*i<=ka; ++i) {
if( ka%i== ) {
q[++top]=i;
while( ka%i== ) ka/=i;
}
}
if( ka> ) q[++top]=ka;
} inline ll power(ll x,ll y)
{
ll ret=;
while( y ) {
if( y& ) ret*=x;
y>>=; x*=x;
}
return ret;
} void dfs(ll now,ll hl,ll choose)
{
if( now>top+ ) return;
if( choose==lim ) {
g[++cnt]=hl; return;
}
dfs(now+,hl*q[now],choose+);
dfs(now+,hl,choose);
} int main()
{
cin>>n>>m;
ready(m);
ans=power(m,n);
for(ll i=; i<=top; ++i) {
lim=i; cnt=;
dfs(,,);
if( i& )
for(ll j=; j<=cnt; ++j) ans-=power(m/g[j],n);
else
for(ll j=; j<=cnt; ++j) ans+=power(m/g[j],n);
}
cout<<ans<<'\n';
return ;
}

洛谷P2231 [HNOI2002]跳蚤 [数论,容斥原理]的更多相关文章

  1. 洛谷 P2231 [HNOI2002]跳蚤

    https://www.luogu.org/problemnew/show/P2231 题意相当于:有n个位置a[1..n],每个位置可以填[1,m]中任一个整数,问共有多少种填法满足gcd(a[1] ...

  2. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  3. 洛谷 P1763 状态压缩dp+容斥原理

    (题目来自洛谷oj) 一天,maze决定对自己的一块n*m的土地进行修建.他希望这块土地共n*m个格子的高度分别是1,2,3,...,n*m-1,n*m.maze又希望能将这一些格子中的某一些拿来建蓄 ...

  4. BZOJ1220 HNOI2002 跳蚤 【容斥原理+高精度】*

    BZOJ1220 HNOI2002 跳蚤 Description Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持 ...

  5. 洛谷P4778 Counting swaps 数论

    正解:数论 解题报告: 传送门! 首先考虑最终的状态是固定的,所以可以知道初始状态的每个数要去哪个地方,就可以考虑给每个数$a$连一条边,指向一个数$b$,表示$a$最后要移至$b$所在的位置 显然每 ...

  6. 洛谷P4562 [JXOI2018]游戏 数论

    正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...

  7. P2231 [HNOI2002]跳蚤

    题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最 ...

  8. 洛谷 P2233 [HNOI2002]公交车路线 解题报告

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  9. 洛谷——P2236 [HNOI2002]彩票

    P2236 [HNOI2002]彩票 给你$m$个数,从中挑$n$个数,使得这$n$个数的倒数之和恰好等于$\frac{x}{y}$ 常见的剪纸思路: 如果当前的倒数和加上最小可能的倒数和$>$ ...

随机推荐

  1. Oracle用imp导入dmp文件记录一下

    ---------------------------------------------------------------------------------------------------- ...

  2. java面试梳理

    自己整理的有关java面试过的问题,有错的请矫正. 1, Spring的核心思想 控制反转和面向切面的编程 2,Spring的核心模块 反向控制与依赖注入.Bean配置以及加载 3,Scope是什么 ...

  3. UVA 1575 Factors

    https://vjudge.net/problem/UVA-1575 题意: 令f(k)=n 表示 有n种方式,可以把正整数k表示成几个数的乘积的形式. 例 10=2*5=5*2,所以f(10)=2 ...

  4. 也谈matlab中读取视频的一个重要函数mmreader

    也谈matlab中读取视频的一个重要函数mmreader 在matlab中输入help mmreader来查阅一下该函数,有如下信息: MMREADER Create a multimedia rea ...

  5. 2017中国大学生程序设计竞赛 - 网络选拔赛 1003 HDU 6152 Friend-Graph (模拟)

    题目链接 Problem Description It is well known that small groups are not conducive of the development of ...

  6. 2017ACM暑期多校联合训练 - Team 6 1010 HDU 6105 Gameia (博弈)

    题目链接 Problem Description Alice and Bob are playing a game called 'Gameia ? Gameia !'. The game goes ...

  7. APP爬虫之Appium使用

    一.安装环境 Appium安装(windows版) 一.安装node.js 1.到官网下载node.js:https://nodejs.org/en/download/ 2.获取到安装文件后,直接双击 ...

  8. VueJS ElementUI el-table 的 formatter 和 scope template 不能同时存在

    暂时可以通过 在 scope template 中自己处理格式化解决 相关issue: 2548

  9. Windows降权

    使用invoke-tokenmanipulation进行降权 枚举所有令牌 PS C:\Users\SMC> Get-ExecutionPolicy Restricted PS C:\Users ...

  10. Java并发编程(二)

    1.Lock接口                                                        在Lock接口出现之前,Java程序是靠synchronized关键字实 ...