【学习笔记】FFT
1、内容
由于noble_太懒 不想写了
非常好的博客:
https://www.cnblogs.com/rvalue/p/7351400.html
http://www.cnblogs.com/candy99/p/6641972.html
http://www.gatevin.moe/acm/fft%E7%AE%97%E6%B3%95%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/
http://hzwer.com/6896.html 黄学长模板
https://blog.csdn.net/ggn_2015/article/details/68922404
http://www.cnblogs.com/zwfymqz/p/8244902.html
http://www.cnblogs.com/19992147orz/p/8041323.html
2、模板
洛谷A了,maxn要开大一点
#include <bits/stdc++.h>
using namespace std;
typedef complex<double> com;
const int maxn=3e7;
const double PI=acos(-);
com a[maxn], b[maxn];
int rev[maxn]; void FFT(com* a,int n,int type){
for(int i=;i<n;i++){
if(rev[i]>i) swap(a[i],a[rev[i]]);
} for(int step=;step<n;step<<=){ //待合并区域中点
com wn(cos(PI/step),type*sin(PI/step));
for(int j=;j<n;j+=(step<<)){ //step<<1是区间右端点
com w(,); //幂
for(int k=j;k<j+step;k++,w*=wn){//枚举左半部分
com x=a[k], y=w*a[k+step];
a[k]=x+y; a[k+step]=x-y;
}
}
}
// if(type==-1) for(int i=0;i<n;i++) a[i]/=n;
}
int main()
{
int n1,n2,n,x,L=;
scanf("%d%d",&n1,&n2);
for(int i=;i<=n1;i++){
scanf("%d",&x); a[i]=x;
}
for(int i=;i<=n2;i++){
scanf("%d",&x); b[i]=x;
}
for(n=;n<=n1+n2;n*=) L++;
for(int i=;i<n;i++){
rev[i]=(rev[i>>]>>)|((i&)<<(L-));
}
FFT(a,n,); FFT(b,n,);
for(int i=;i<=n;i++) a[i]*=b[i];
FFT(a,n,-);
for(int i=;i<=n1+n2;i++){
printf("%d ",(int)(a[i].real()/n+0.5));
}
return ;
}
【学习笔记】FFT的更多相关文章
- [学习笔记]FFT——快速傅里叶变换
大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质 ...
- 学习笔记::fft
上次学fft还是5月份,昨天发现已经忘记怎么推导了,代码也看不懂了,就又学习了一发,大概是看menci的博客 0.fft可以进行多项式乘法,朴素的乘法跟手算一样是O(n^2),fft可以通过分治做到n ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...
- [学习笔记]NTT——快速数论变换
先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 【学习笔记】快速傅里叶变换(FFT)
[学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) ...
- 快速傅里叶变换(FFT)学习笔记
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 ...
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
随机推荐
- 使用treemap 遍历map参数
遍历格式 XXX=123&XXX=456.....参数为map treemap是一个有序的key-value集合,它是通过红黑树实现的 TreeMap<String, String> ...
- 基本SQL命令
1.SQL命令的使用规则 1.每条命令必须以 ; 结尾 2.SQL命令不区分字母大小写 3.使用 \c 来终止当前命令的执行 2.库的管理 1.库的基本操作 1.查看已有库 show database ...
- mysql 时间转换 用EXCEL实现MySQL时间戳格式和日期格互转
今天项目表中需要导入好几w条数据 ,但日期由两个一个是标准时间一个为时间戳,程序中搜索是根据时间戳来搜索的,所以在网上翻箱倒柜的终于找到解决之道了,利用excel转换时间戳 时间戳转成正常日期的公式: ...
- SQL Server, Cannot resolve the collation conflict
今天遇到一个较为头痛的问题: Cannot resolve the collation conflict between "Chinese_PRC_90_CI_AS" and &q ...
- [转]blocks编程
原文地址:http://geeklu.com/2012/01/block/ 介绍 声明创建和调用 Block和变量 Block实际应用 1.介绍 Block是一个C Level的语法以及运行时的一个特 ...
- BZOJ4837:[Lydsy1704月赛]LRU算法(双指针&模拟)
Description 小Q同学在学习操作系统中内存管理的一种页面置换算法,LRU(LeastRecentlyUsed)算法. 为了帮助小Q同学理解这种算法,你需要在这道题中实现这种算法,接下来简要地 ...
- SpringMVC和Freemarker整合,带自定义标签的使用方法
SpringMVC和Freemarker整合,带自定义标签的使用方法. [参考来源:http://www.360doc.com/content/14/1225/14/1007797_435663342 ...
- (转载)从MVC到前后端分离
摘要:MVC模式早在上个世纪70年代就诞生了,直到今天它依然存在,可见生命力相当之强.MVC模式最早用于Smalltalk语言中,最后在其它许多开发语言中都得到了很好的应用,例如,Java中的Stru ...
- POJ3422 Kaka's Matrix Travels 【费用流】*
POJ3422 Kaka's Matrix Travels Description On an N × N chessboard with a non-negative number in each ...
- 优化 UWP 中图片的内存占用
跟图片打交道的 UWP 应用或多或少都会遇到图片带来的性能问题,就算不主要处理图片,做个论坛做个新闻客户端都涉及到大量图片.一个帖子.一篇文章里多半都是些高清大图,这些图片一张即可占用程序 1~2M ...