【学习笔记】FFT
1、内容
由于noble_太懒 不想写了
非常好的博客:
https://www.cnblogs.com/rvalue/p/7351400.html
http://www.cnblogs.com/candy99/p/6641972.html
http://www.gatevin.moe/acm/fft%E7%AE%97%E6%B3%95%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/
http://hzwer.com/6896.html 黄学长模板
https://blog.csdn.net/ggn_2015/article/details/68922404
http://www.cnblogs.com/zwfymqz/p/8244902.html
http://www.cnblogs.com/19992147orz/p/8041323.html
2、模板
洛谷A了,maxn要开大一点
#include <bits/stdc++.h>
using namespace std;
typedef complex<double> com;
const int maxn=3e7;
const double PI=acos(-);
com a[maxn], b[maxn];
int rev[maxn]; void FFT(com* a,int n,int type){
for(int i=;i<n;i++){
if(rev[i]>i) swap(a[i],a[rev[i]]);
} for(int step=;step<n;step<<=){ //待合并区域中点
com wn(cos(PI/step),type*sin(PI/step));
for(int j=;j<n;j+=(step<<)){ //step<<1是区间右端点
com w(,); //幂
for(int k=j;k<j+step;k++,w*=wn){//枚举左半部分
com x=a[k], y=w*a[k+step];
a[k]=x+y; a[k+step]=x-y;
}
}
}
// if(type==-1) for(int i=0;i<n;i++) a[i]/=n;
}
int main()
{
int n1,n2,n,x,L=;
scanf("%d%d",&n1,&n2);
for(int i=;i<=n1;i++){
scanf("%d",&x); a[i]=x;
}
for(int i=;i<=n2;i++){
scanf("%d",&x); b[i]=x;
}
for(n=;n<=n1+n2;n*=) L++;
for(int i=;i<n;i++){
rev[i]=(rev[i>>]>>)|((i&)<<(L-));
}
FFT(a,n,); FFT(b,n,);
for(int i=;i<=n;i++) a[i]*=b[i];
FFT(a,n,-);
for(int i=;i<=n1+n2;i++){
printf("%d ",(int)(a[i].real()/n+0.5));
}
return ;
}
【学习笔记】FFT的更多相关文章
- [学习笔记]FFT——快速傅里叶变换
大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质 ...
- 学习笔记::fft
上次学fft还是5月份,昨天发现已经忘记怎么推导了,代码也看不懂了,就又学习了一发,大概是看menci的博客 0.fft可以进行多项式乘法,朴素的乘法跟手算一样是O(n^2),fft可以通过分治做到n ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...
- [学习笔记]NTT——快速数论变换
先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 【学习笔记】快速傅里叶变换(FFT)
[学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) ...
- 快速傅里叶变换(FFT)学习笔记
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 ...
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
随机推荐
- Jenkins分享
2016-02-26 小马哥 程序员之路 PPT下载地址:http://pan.baidu.com/s/1i4pw6oP Jenkins 是一个开源软件项目,旨在提供一个开放易用的软件平台,使 ...
- TreeSet实现原理及源码分析
类似于HashMap和HashSet之间的关系,HashSet底层依赖于HashMap实现,TreeSet底层则采用一个NavigableMap来保存TreeSet集合的元素.但实际上,由于Navig ...
- flutter笔记1:VScode安装dart code插件踩坑记录
新手菜鸟一枚,想从产品转入技术坑,目标:移动端APP开发.最近听技术达人 飞狐 说flutter beta发布了,支持跨平台APP开发,各种强大易上手,于是乎零基础入坑~话说想提高英文水平的同学,请移 ...
- Android编程 高德地图 中如何重写 定位按键 的触发事件 (com.amap.api.maps2d.LocationSource)点击定位后不仅定位在地图中心点上而且可以设置地图的缩放大小和提示
在利用高德地图来编写自己的APP的时候,发现了一种对定位按键的重写方法,那就是利用 com.amap.api.maps2d.LocationSource 接口来重写. 什么是定位按键呢,下图中右 ...
- I.MX6 U-Boot mkconfig hacking
/**************************************************************************** * I.MX6 U-Boot mkconfi ...
- Qt jsoncpp 对象拷贝、删除、函数调用 demo
/*************************************************************************************************** ...
- 每天一个linux命令(文件操作):【转载】find 命令的参数详解
find一些常用参数的一些常用实例和一些具体用法及注意事项. 1.使用name选项: 文件名选项是find命令最常用的选项,要么单独使用该选项,要么和其他选项一起使用.可以使用某种文件名模式来匹配文件 ...
- 剑指offer第七章&第八章
剑指offer第七章&第八章 1.把字符串转换成整数 将一个字符串转换成一个整数,要求不能使用字符串转换整数的库函数. 数值为0或者字符串不是一个合法的数值则返回0 输入描述: 输入一个字符串 ...
- 【java基础】java集合之HashTable,HashSet,HashMap
[一]HashSet (1)HashSet内部维护的是一个HashMap,具体原理见java集合之HashMap [二]HashTable (1)HashTable内部维护的是一个Entry的数组.E ...
- BZOJ3590 [Snoi2013]Quare
题意 4.20四川芦山地震发生后,抗震救灾委员会接到一个紧急任务,四川省给该委员会发了一份地图,这份地图给出了该省一些城市的情况:任两个城市是用一条或多条公路连接起来的,也可以没有公路连接,但是每个城 ...