1、内容

由于noble_太懒 不想写了

非常好的博客:

https://www.cnblogs.com/rvalue/p/7351400.html

http://www.cnblogs.com/candy99/p/6641972.html

http://www.gatevin.moe/acm/fft%E7%AE%97%E6%B3%95%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/

http://hzwer.com/6896.html 黄学长模板

https://oi.men.ci/fft-notes/

https://blog.csdn.net/ggn_2015/article/details/68922404

http://www.cnblogs.com/zwfymqz/p/8244902.html

http://www.cnblogs.com/19992147orz/p/8041323.html

2、模板

洛谷A了,maxn要开大一点

 #include <bits/stdc++.h>
using namespace std;
typedef complex<double> com;
const int maxn=3e7;
const double PI=acos(-);
com a[maxn], b[maxn];
int rev[maxn]; void FFT(com* a,int n,int type){
for(int i=;i<n;i++){
if(rev[i]>i) swap(a[i],a[rev[i]]);
} for(int step=;step<n;step<<=){ //待合并区域中点
com wn(cos(PI/step),type*sin(PI/step));
for(int j=;j<n;j+=(step<<)){ //step<<1是区间右端点
com w(,); //幂
for(int k=j;k<j+step;k++,w*=wn){//枚举左半部分
com x=a[k], y=w*a[k+step];
a[k]=x+y; a[k+step]=x-y;
}
}
}
// if(type==-1) for(int i=0;i<n;i++) a[i]/=n;
}
int main()
{
int n1,n2,n,x,L=;
scanf("%d%d",&n1,&n2);
for(int i=;i<=n1;i++){
scanf("%d",&x); a[i]=x;
}
for(int i=;i<=n2;i++){
scanf("%d",&x); b[i]=x;
}
for(n=;n<=n1+n2;n*=) L++;
for(int i=;i<n;i++){
rev[i]=(rev[i>>]>>)|((i&)<<(L-));
}
FFT(a,n,); FFT(b,n,);
for(int i=;i<=n;i++) a[i]*=b[i];
FFT(a,n,-);
for(int i=;i<=n1+n2;i++){
printf("%d ",(int)(a[i].real()/n+0.5));
}
return ;
}

【学习笔记】FFT的更多相关文章

  1. [学习笔记]FFT——快速傅里叶变换

    大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质 ...

  2. 学习笔记::fft

    上次学fft还是5月份,昨天发现已经忘记怎么推导了,代码也看不懂了,就又学习了一发,大概是看menci的博客 0.fft可以进行多项式乘法,朴素的乘法跟手算一样是O(n^2),fft可以通过分治做到n ...

  3. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  4. [学习笔记]NTT——快速数论变换

    先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...

  5. [学习笔记] 多项式与快速傅里叶变换(FFT)基础

    引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...

  6. 【学习笔记】快速傅里叶变换(FFT)

    [学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) ...

  7. 快速傅里叶变换(FFT)学习笔记

    定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 ...

  8. FFT和NTT学习笔记_基础

    FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...

  9. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  10. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

随机推荐

  1. 使用treemap 遍历map参数

    遍历格式 XXX=123&XXX=456.....参数为map treemap是一个有序的key-value集合,它是通过红黑树实现的 TreeMap<String, String> ...

  2. 基本SQL命令

    1.SQL命令的使用规则 1.每条命令必须以 ; 结尾 2.SQL命令不区分字母大小写 3.使用 \c 来终止当前命令的执行 2.库的管理 1.库的基本操作 1.查看已有库 show database ...

  3. mysql 时间转换 用EXCEL实现MySQL时间戳格式和日期格互转

    今天项目表中需要导入好几w条数据 ,但日期由两个一个是标准时间一个为时间戳,程序中搜索是根据时间戳来搜索的,所以在网上翻箱倒柜的终于找到解决之道了,利用excel转换时间戳 时间戳转成正常日期的公式: ...

  4. SQL Server, Cannot resolve the collation conflict

    今天遇到一个较为头痛的问题: Cannot resolve the collation conflict between "Chinese_PRC_90_CI_AS" and &q ...

  5. [转]blocks编程

    原文地址:http://geeklu.com/2012/01/block/ 介绍 声明创建和调用 Block和变量 Block实际应用 1.介绍 Block是一个C Level的语法以及运行时的一个特 ...

  6. BZOJ4837:[Lydsy1704月赛]LRU算法(双指针&模拟)

    Description 小Q同学在学习操作系统中内存管理的一种页面置换算法,LRU(LeastRecentlyUsed)算法. 为了帮助小Q同学理解这种算法,你需要在这道题中实现这种算法,接下来简要地 ...

  7. SpringMVC和Freemarker整合,带自定义标签的使用方法

    SpringMVC和Freemarker整合,带自定义标签的使用方法. [参考来源:http://www.360doc.com/content/14/1225/14/1007797_435663342 ...

  8. (转载)从MVC到前后端分离

    摘要:MVC模式早在上个世纪70年代就诞生了,直到今天它依然存在,可见生命力相当之强.MVC模式最早用于Smalltalk语言中,最后在其它许多开发语言中都得到了很好的应用,例如,Java中的Stru ...

  9. POJ3422 Kaka's Matrix Travels 【费用流】*

    POJ3422 Kaka's Matrix Travels Description On an N × N chessboard with a non-negative number in each ...

  10. 优化 UWP 中图片的内存占用

    跟图片打交道的 UWP 应用或多或少都会遇到图片带来的性能问题,就算不主要处理图片,做个论坛做个新闻客户端都涉及到大量图片.一个帖子.一篇文章里多半都是些高清大图,这些图片一张即可占用程序 1~2M ...