【欧拉定理】BZOJ3884-上帝与集合的正确用法
【题目大意】
求2^(2^(2^(2^(2^...)))) mod p。
【思路】
蒟蒻在知道用欧拉做的前提下,对这题目瞪了好久没有明白,看了正解扑通一声跪下来orz直接搬运popoqqq大爷的吧反正有水印(.

【错误点】
快速幂没有开longlong……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long ll;
using namespace std; int get_phi(int x)
{
int res=x;
for (int i=;i*i<=x;i++)
{
if (x%i==)
{
res-=res/i;
while (x%i==) x/=i;
}
}
if (x>) res-=res/x;
return res;
} int quick_power(ll x,int y,int MOD)//这里有可能会溢出,用long long
{
ll ret=;
while (y)
{
if (y&) ret=(ret*x)%MOD;
x=(x*x)%MOD;
y>>=;
}
return ret;
} int solve(int p)
{
if (p==) return ;
int k=;
while (!(p&)) p>>=,++k;
int phi=get_phi(p);
int re=solve(phi);
re=(re-k%phi+phi)%phi;
int ans=quick_power(,re,p)%p;
return (ans<<k);
} void init()
{
int T;
scanf("%d",&T);
while (T--)
{
int p;
scanf("%d",&p);
printf("%d\n",solve(p));
}
} int main()
{
init();
return ;
}
【欧拉定理】BZOJ3884-上帝与集合的正确用法的更多相关文章
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- BZOJ3884 上帝与集合的正确用法 【欧拉定理】
题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
随机推荐
- oozie与hive的简单案例
1.把oozie中自带的hive案例拷贝到 测试目录 /opt/cdh-5.3.6/oozie-4.0.0-cdh5.3.6/oozie-apps下 2. 编辑 job.properties # # ...
- 聊聊spring的那些扩展机制
1.背景 慎入:本文将会有大量代码出入. 在看一些框架源码的时候,可以看见他们很多都会和Spring去做结合.举个例子dubbo的配置: 很多人其实配置了也就配置了,没有去过多的思考:为什么这么配置s ...
- 树形DP初探•总结
这几天,我自学了基础的树形DP,在此给大家分享一下我的心得. 首先,树形DP这种题主要就是解决有明确分层次且无环的树上动态规划的题.这种题型一般(注意只是基础.普通的情况下)用深度优先搜索来解决实 ...
- 洛谷 1.5.1 Number Triangles 数字金字塔
Description 考虑在下面被显示的数字金字塔. 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大. 每一步可以走到左下方的点也可以到达右下方的点. 7 3 8 8 1 0 ...
- typeof运算符
javascript中typeof用来判断一个变量或表达式的数据类型. typeof 返回值有六种可能: "number," "string," "b ...
- [Gym-100625J] 搜索
题目链接:https://cn.vjudge.net/problem/Gym-100625J 具体思路:首先,具体思路是两个人一起走到一个点,然后两个人按照同样的道路走出去,听了别人的思路,还有一种特 ...
- 删除none的images
脚本 #!/bin/bash docker ps -a | grep "Exited" | awk '{print $1 }'|xargs docker stop docker p ...
- Groovy 与 DSL
一:DSL 概念 指的是用于一个特定领域的语言(功能领域.业务领域).在这个给出的概念中有 3个重点: 只用于一个特定领域,而非所有通用领域,比如 Java / C++就是用于通用领域,而不可被称为 ...
- MySQL之正则表达式
一.介绍 正则表达式用来描述或者匹配符合规则的字符串.它的用法和like比较相似,但是它又比like更强大,能够实现一些很特殊的规则匹配:正则表达式需要使用REGEXP命令,匹配上返回"1& ...
- java.lang.reflect.UndeclaredThrowableExceptionjiang
实例包含由调用处理程序抛出的经过检查的未声明异常,可以使用 getUndeclaredThrowable() 方法获取 String msg = null; if (e instanceof Unde ...