【欧拉定理】BZOJ3884-上帝与集合的正确用法
【题目大意】
求2^(2^(2^(2^(2^...)))) mod p。
【思路】
蒟蒻在知道用欧拉做的前提下,对这题目瞪了好久没有明白,看了正解扑通一声跪下来orz直接搬运popoqqq大爷的吧反正有水印(.
【错误点】
快速幂没有开longlong……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long ll;
using namespace std; int get_phi(int x)
{
int res=x;
for (int i=;i*i<=x;i++)
{
if (x%i==)
{
res-=res/i;
while (x%i==) x/=i;
}
}
if (x>) res-=res/x;
return res;
} int quick_power(ll x,int y,int MOD)//这里有可能会溢出,用long long
{
ll ret=;
while (y)
{
if (y&) ret=(ret*x)%MOD;
x=(x*x)%MOD;
y>>=;
}
return ret;
} int solve(int p)
{
if (p==) return ;
int k=;
while (!(p&)) p>>=,++k;
int phi=get_phi(p);
int re=solve(phi);
re=(re-k%phi+phi)%phi;
int ans=quick_power(,re,p)%p;
return (ans<<k);
} void init()
{
int T;
scanf("%d",&T);
while (T--)
{
int p;
scanf("%d",&p);
printf("%d\n",solve(p));
}
} int main()
{
init();
return ;
}
【欧拉定理】BZOJ3884-上帝与集合的正确用法的更多相关文章
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- BZOJ3884 上帝与集合的正确用法 【欧拉定理】
题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
随机推荐
- 47、Python面向对象中的继承有什么特点?
继承的优点: 1.建造系统中的类,避免重复操作. 2.新类经常是基于已经存在的类,这样就可以提升代码的复用程度. 继承的特点: 1.在继承中基类的构造(__init__()方法)不会被自动调用,它需要 ...
- Web攻防系列教程之 Cookie注入攻防实战
摘要:随着网络安全技术的发展,SQL注入作为一种很流行的攻击方式被越来越多的人所知晓.很多网站也都对SQL注入做了防护,许多网站管理员的做法就是添加一个防注入程序.这时我们用常规的手段去探测网站的SQ ...
- long类型的数据转化为时间
long time = 111111111111111111111:SimpleDateFormat sdf= new SimpleDateFormat("yyyy-MM-dd HH:mm: ...
- Feather包实现数据框快速读写,你值得拥有
什么是Feather? Feature是一种文件格式,支持R语言和Python的交互式存储,速度更快.目前支持R语言的data.frame和Python pandas 的DataFrame. Feat ...
- 笔记本自开wifi设置
笔记本自开wifi设置 是这样的有些笔记本他自身就可以放出热点供其他的小伙伴们连接,不用非得去下专门的工具有些笔记本的网卡是自带支持双收发的(这里注意我指的是有些笔记本不是全部) 命令我已经写出来了 ...
- Linux中等待队列的实现
1. 等待队列数据结构 等待队列由双向链表实现,其元素包括指向进程描述符的指针.每个等待队列都有一个等待队列头(wait queue head),等待队列头是一个类型为wait_quequ ...
- group by的运用
select a.* from zeai_photo a inner join (select max(id) mid,userid from zeai_photo group by userid) ...
- 将table导出为excel格式文件
html: <table cellpadding="0" cellspacing="0" class="data_table" id= ...
- xss 过滤
一. xss过滤 用户通过Form获取展示在终端, 提交数据,Form验证里面加入xss验证(对用户提交的内容验证是否有关键标签) from django.conf.urls import url f ...
- Educational Codeforces Round 25 D - Suitable Replacement(贪心)
题目大意:给你字符串s,和t,字符串s中的'?'可以用字符串t中的字符代替,要求使得最后得到的字符串s(可以将s中的字符位置两两交换,任意位置任意次数)中含有的子串t最多. 解题思路: 因为知道s中的 ...