ZOJ3329One Person Game(循环型 数学期望)
There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1, K2, K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:
- Set the counter to 0 at first.
- Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
- If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.
Calculate the expectation of the number of times that you cast dice before the end of the game.
Input
There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers n, K1, K2, K3, a, b, c (0 <= n <= 500, 1 < K1, K2, K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).
<b< dd="">
Output
For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.
Sample Input
2
0 2 2 2 1 1 1
0 6 6 6 1 1 1
Sample Output
1.142857142857143
1.004651162790698
题意:
有三个骰子,面值分别是k1,k2,k3。每次扔出的值之和加到ans上,问多少次才能ans>n;当然,当遇到k1=a,k2=b,k3=c时,ans=0;重新开始累加。
思路:
和之前Maze一个题型。写出的公式是有后续性的。我们需要弄一个递推公式,消去后续性。
本题通过代换系数,化简后求系数。 一般形成环的用高斯消元法求解。但是此题都是和dp[]相关。所有可以分离出系数。
设dp[i]表示达到i分时到达目标状态的期望,pk为投掷k分的概率,p0为回到0的概率
则dp[i]=∑(pk*dp[i+k])+dp[]*p0+;
都和dp[]有关系,而且dp[]就是我们所求,为常数
设dp[i]=A[i]*dp[]+B[i];
代入上述方程右边得到:
dp[i]=∑(pk*A[i+k]*dp[]+pk*B[i+k])+dp[]*p0+
=(∑(pk*A[i+k])+p0)dp[]+∑(pk*B[i+k])+;
明显A[i]=(∑(pk*A[i+k])+p0)
B[i]=∑(pk*B[i+k])+
先递推求得A[]和B[].
那么 dp[]=B[]/(-A[]);

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
double A[maxn],B[maxn],P[maxn];
int main()
{
int T,n,k1,k2,k3,a,b,c,i,j,k;
scanf("%d",&T);
while(T--){
memset(A,,sizeof(A));memset(B,,sizeof(B));memset(P,,sizeof(P));
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
P[]=1.0/k1/k2/k3;
for(i=;i<=k1;i++)
for(j=;j<=k2;j++)
for(k=;k<=k3;k++)
if(!(i==a&&j==b&&k==c))
P[i+j+k]+=P[];
for(i=n;i>=;i--){
A[i]=P[];B[i]=;
for(j=;j<=k1+k2+k3;j++) A[i]+=P[j]*A[i+j];
for(j=;j<=k1+k2+k3;j++) B[i]+=P[j]*B[i+j];
}
printf("%.15lf\n",B[]/(-A[]));
}
return ;
}
ZOJ3329One Person Game(循环型 数学期望)的更多相关文章
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
- [BZOJ 3143][HNOI2013]游走(数学期望)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...
- Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)
题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...
- 数学期望和概率DP题目泛做(为了对应AD的课件)
题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...
- [2013山东ACM]省赛 The number of steps (可能DP,数学期望)
The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...
- 【BZOJ2134】单位错选(数学期望,动态规划)
[BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...
- 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)
[BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...
- 【Luogu1291】百事世界杯之旅(动态规划,数学期望)
[Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...
- 【BZOJ4872】分手是祝愿(动态规划,数学期望)
[BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...
随机推荐
- Python基础笔记系列十:模块
本系列教程供个人学习笔记使用,如果您要浏览可能需要其它编程语言基础(如C语言),why?因为我写得烂啊,只有我自己看得懂!! 模块 #1.类比于java中的jar包,模块能让你能够有逻辑地组织你的Py ...
- jmeter-对响应数据进行unicode转码
1,请求接口成功后,返回数据为unicode编码,查看不方便
- ArrayBuffer
ArrayBuffer对象.TypedArray视图和DataView视图是 JavaScript 操作二进制数据的一个接口.这些对象早就存在,属于独立的规格(2011 年 2 月发布),ES6 将它 ...
- 项目管理工具:Maven
Maven是什么,作用是什么? Maven是项目管理工具,主要有两大作用:项目构建和依赖管理.项目构建就是项目编译.测试.集成发布实现自动化,依赖管理是很方便的功能,只要把当前项目所依赖的构件(jar ...
- Nordic nRF5 SDK和softdevice介绍
SDK和Softdevice的区别是什么?怎么选择SDK和softdevice版本?芯片,SDK和softdevice有没有版本兼容问题?怎么理解SDK目录结构?SDK帮助文档在哪里?Softdevi ...
- pahlcon:循环调度(Dispatch Loop)或跳转
循环调度将会在分发器执行,直到没有action需要执行为止.在上面的例子中,只有一个action 被执行到.现在让我们来看下“forward”(转发)怎样才能在循环调度里提供一个更加复杂的操作流,从而 ...
- 引发事件代码封装成OnEventName
引发事件的代码,通常可以封装成“On+事件名称”的方法(On:表示当“什么什么”的时候),如下所示: 1:引发事件代码: if (PropertyChanged != null)//为了实现将数据源的 ...
- for each/in/of的解释and example
for-of 循环:代码示例for (var value of myArray) {console.log(value);}循环的对象需为一个数组 无法记录索引 可以相应break.continue. ...
- UVA-11090 Going in Cycle!! (平均值最大回路)
题目大意:一个n个点,m条无向边的图,求出平均权值最小的回路. 题目分析:二分枚举平均值mid,只需判断是否存在平均值小于mid的回路,即判断是否有sum(wi)<mid*k (1≤i≤k),只 ...
- yii2在linux下面无法启用gii
原因:linux下面默认的Gii只能通过127.0.0.1来访问,也就是本机访问,安全: 解决:在conf/main-local.php添加自己的ip