随机森林(Random Forest):

随机森林是一个最近比较火的算法,它有很多的优点:

  • 在数据集上表现良好

  • 在当前的很多数据集上,相对其他算法有着很大的优势

  • 它能够处理很高维度(feature很多)的数据,并且不用做特征选择

  • 在训练完后,它能够给出哪些feature比较重要

  • 在创建随机森林的时候,对generlization error使用的是无偏估计

  • 训练速度快

  • 在训练过程中,能够检测到feature间的互相影响

  • 容易做成并行化方法

  • 实现比较简单

  在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。

  

随机森林的优点与缺点

优点:

1.正如上文所述,随机森林算法能解决分类与回归两种类型的问题,并在这两个方面都有相当好的估计表现;

2.随机森林对于高维数据集的处理能力令人兴奋,它可以处理成千上万的输入变量,并确定最重要的变量,因此被认为是一个不错的降维方法。此外,该模型能够输出变量的重要性程度,这是一个非常便利的功能。下图展示了随机森林对于变量重要性程度的输出形式:

3.在对缺失数据进行估计时,随机森林是一个十分有效的方法。就算存在大量的数据缺失,随机森林也能较好地保持精确性;

4.当存在分类不平衡的情况时,随机森林能够提供平衡数据集误差的有效方法;

5.模型的上述性能可以被扩展运用到未标记的数据集中,用于引导无监督聚类、数据透视和异常检测;

6.随机森林算法中包含了对输入数据的重复自抽样过程,即所谓的bootstrap抽样。这样一来,数据集中大约三分之一将没有用于模型的训练而是用于测试,这样的数据被称为out of bag samples,通过这些样本估计的误差被称为out of bag error。研究表明,这种out of bag方法的与测试集规模同训练集一致的估计方法有着相同的精确程度,因此在随机森林中我们无需再对测试集进行另外的设置。

缺点:

1.随机森林在解决回归问题时并没有像它在分类中表现的那么好,这是因为它并不能给出一个连续型的输出。当进行回归时,随机森林不能够作出超越训练集数据范围的预测,这可能导致在对某些还有特定噪声的数据进行建模时出现过度拟合。

2.对于许多统计建模者来说,随机森林给人的感觉像是一个黑盒子——你几乎无法控制模型内部的运行,只能在不同的参数和随机种子之间进行尝试。

随机森林算法是如何工作的?

在随机森林中,每一个决策树“种植”和“生长”的规则如下所示:

1.假设我们设定训练集中的样本个数为N,然后通过有重置的重复多次抽样来获得这N个样本,这样的抽样结果将作为我们生成决策树的训练集;

2.如果有M个输入变量,每个节点都将随机选择m(m<M)个特定的变量,然后运用这m个变量来确定最佳的分裂点。在决策树的生成过程中,m的值是保持不变的;

3.每棵决策树都最大可能地进行生长而不进行剪枝;

4.通过对所有的决策树进行加总来预测新的数据(在分类时采用多数投票,在回归时采用平均)。

  其实随机森林使用起来非常简单,两个最重要的步骤无非就是train()和predict()函数,其他的函数都是用来得到测试结果。

Gradient Boost Decision Tree:

  GBDT是一个应用很广泛的算法,可以用来做分类、回归。在很多的数据上都有不错的效果。GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman

  Gradient Boost其实是一个框架,里面可以套入很多不同的算法,可以参考一下机器学习与数学(3)中的讲解。Boost是"提升"的意思,一般Boosting算法都是一个迭代的过程,每一次新的训练都是为了改进上一次的结果。

  原始的Boost算法是在算法开始的时候,为每一个样本赋上一个权重值,初始的时候,大家都是一样重要的。在每一步训练中得到的模型,会使得数据点的估计有对有错,我们就在每一步结束后,增加分错的点的权重,减少分对的点的权重,这样使得某些点如果老是被分错,那么就会被“严重关注”,也就被赋上一个很高的权重。然后等进行了N次迭代(由用户指定),将会得到N个简单的分类器(basic learner),然后我们将它们组合起来(比如说可以对它们进行加权、或者让它们进行投票等),得到一个最终的模型。

  而Gradient Boost与传统的Boost的区别是,每一次的计算是为了减少上一次的残差(residual),而为了消除残差,我们可以在残差减少的梯度(Gradient)方向上建立一个新的模型。所以说,在Gradient Boost中,每个新的模型的简历是为了使得之前模型的残差往梯度方向减少,与传统Boost对正确、错误的样本进行加权有着很大的区别。

随机深林和GBDT的更多相关文章

  1. 机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  2. 机器学习中的算法——决策树模型组合之随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...

  3. 决策树模型组合之(在线)随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over ...

  4. 机器学习中的算法-决策树模型组合之随机森林与GBDT

    机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...

  5. 随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...

  6. 决策树模型组合之随机森林与GBDT

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  7. 决策树模型组合之随机森林与GBDT(转)

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  8. 常见算法(logistic回归,随机森林,GBDT和xgboost)

    常见算法(logistic回归,随机森林,GBDT和xgboost) 9.25r早上面网易数据挖掘工程师岗位,第一次面数据挖掘的岗位,只想着能够去多准备一些,体验面这个岗位的感觉,虽然最好心有不甘告终 ...

  9. OpenCV:使用 随机森林与GBDT

    随机森林顾名思义,是用随机的方式建立一个森林.简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的.对于每棵树,它们使用的训练集是从总的训 ...

随机推荐

  1. C++标准库之mutex

    互斥锁有可重入.不可重入之分.C++标准库中用mutex表示不可重入的互斥锁,用recursive_mutex表示可重入的互斥锁.为这两个类增加根据时间来阻塞线程的能力,就又有了两个新的互斥锁:tim ...

  2. vue-cli打包构建时常见的报错解决方案

    报错1:vue-cli项目本地npm run dev启动后,chrome打开是空白页 解决方案:将config下的index.js中的assetsPublicPath路径都设置为‘/’绝对路径 报错2 ...

  3. 转载 HTTPS 之fiddler抓包、jmeter请求

    转载自 http://suixiang0923.github.io/2016/01/12/%E6%B5%85%E8%B0%88HTTPS%E4%BB%A5%E5%8F%8AFiddler%E6%8A% ...

  4. &lt;LeetCode OJ&gt; 217./219. Contains Duplicate (I / II)

    Given an array of integers, find if the array contains any duplicates. Your function should return t ...

  5. (转)Python中的random模块

    Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...

  6. RMI几种公布和引用服务的方式

    RMI是Java原生的分布式服务机制.支持Java对Java的分布式訪问.採用Java的序列化协议进行CodeC操作. 这里简单说下RMI公布服务和client引用服务的方式. RMI公布服务时支持两 ...

  7. Group By和Order By的总结

    1.Group By 语句中:select指定的字段必须是“分组依据字段”,其他字段若想出现在select中则必须包含在聚合函数中. 例如: select [col1], avg([col2])    ...

  8. soundpool播放声音

    一般大家使用的是MediaPlayer来播放音频,它的创建和销毁都是非常消耗资源的,如果我们的需求是播放一些短促而且频繁播放的音频的话MediaPlayer就有些不合适了,我们来讲讲SoundPool ...

  9. java基础---->数组的基础使用(一)

    数组是一种效率最高的存储和随机访问对象引用序列的方式,我们今天来对数组做简单的介绍.手写瑶笺被雨淋,模糊点画费探寻,纵然灭却书中字,难灭情人一片心. 数组的简单使用 一.数组的赋值 String[] ...

  10. 如何用原生js替换字符串中的某个字符(或字符串)为指定的字符串?

    <html> <head><title>我的第一个 HTML 页面</title></head><script type=" ...