ECharts学习总结(一):ECharts的第一个图表
在进行echarts图表开发之前先要到echarts官网下载echarts的库文件,我下载的是echarts-2.2.7。然后把库文件放到工程文件web目录下。接下来进行第一个图表的显示步骤如下:
1、新建一个echarts.html文件。为ECharts准备一个具备大小(宽高)的Dom。
<!DOCTYPE html>
<head>
<meta charset="utf-8">
<title>ECharts</title>
</head>
<body>
<!-- 为ECharts准备一个具备大小(宽高)的Dom -->
<div id="main" style="height:400px"></div>
</body>
2、新建<script>标签引入echarts-all.js,引入图表文件。
<!DOCTYPE html>
<head>
<meta charset="utf-8">
<title>ECharts</title>
</head>
<body>
<!-- 为ECharts准备一个具备大小(宽高)的Dom -->
<div id="main" style="height:400px"></div>
<!-- ECharts单文件引入 -->
<script src="js/echarts-2.2.7/build/dist/echarts-all.js"></script>
</body>
3、新建<script>标签,使用全局变量echarts初始化图表并驱动图表的生成。
<!DOCTYPE html>
<head>
<meta charset="utf-8">
<title>ECharts</title>
</head>
<body>
<!-- 为ECharts准备一个具备大小(宽高)的Dom -->
<div id="main" style="height:400px"></div>
<!-- ECharts单文件引入 -->
<script src="js/echarts-2.2.7/build/dist/echarts-all.js"></script>
<script type="text/javascript">
// 基于准备好的dom,初始化echarts图表
var myChart = echarts.init(document.getElementById('main')); var option = {
tooltip: {
show: true
},
legend: {
data:['销量']
},
tooltip:{
show:true,
trigger:'item'
},
xAxis : [
{
type : 'category',
data : ["衬衫","羊毛衫","雪纺衫","裤子","高跟鞋","袜子"]
}
],
yAxis : [
{
type : 'value'
}
],
series : [
{
"name":"销量",
"type":"bar",
"data":[5, 20, 40, 10, 10, 20]
}
]
}; // 为echarts对象加载数据
myChart.setOption(option);
</script>
</body>
4、浏览器中打开echarts.html,就可看到以下效果
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABO4AAAHICAIAAAB21zJoAAAgAElEQVR4nOzdZ1tU9x6v8fOezo4FRdQgYg8WNG6NBTCJaNQYlShqBIRYEA22xII1kRa7Yq8IRqVIG5pDG3ofhkk158E6mYu9BPN3kt/MYnF/ru+DvZHBwWsFuJm1Zv6PEwAAAACAQeX/ePsOAAAAAADwbkhZAAAAAMAgQ8oCAAAAAAYZUhYAAAAAMMiQsgAAAACAQYaUBQAAAAAMMqQsAAADs3f/UlXy6083fruX/NutM++6X3+68XNjzVs+/OPHjzdt2pSent73jbm5ubGxsbo3Op1Om80WGxs7bADjxo1LSkr69/8FAAAwJFIWAID+/dzR+tvdc693Lfnzq5l/fhXk1ma+3r30t/spzs62fv+KkydPRkVFWSwWm822ffv2lStX5uTk5OTkxMTEpKamOp3Ow4cPR0RElJaWOp1O7X327dvX84YXL15EREQcO3bMo/9AAAB4DykLAED/fs178MeBVX9u/eAf7o+Da355+fjNj5+Tk7Ny5cr33ntv2LBh48ePT0pKSktL27hx45EjR2JiYhISEjZt2rRhw4abN2/2Tdn33ntv+BuGDRvm5+dHygIAhg5SFgCA/v12P/XP2Pn/PGX/jA7+7X7Kmx//4MGDGzZsKC4uttvtdrvd4XD09vY6HI4XL15oj8o6HI6enp7e3t7e3l5nn0dl7W94/vw5j8oCAIYUUhYAgP79lnHiX+jYrR/8ufWD326f0X3w3NzciIiIsWPHDh8+fMSIEaGhoZGRkTNmzBgxYsTw4cO1h2pHjBgxYsSIzz77LCcnx9nnUdkRbxg+fDiPygIAhhRSFgCA/v2bKXtLn7K9vb09PT3379/fsGFDcnKy3W5PS0uLior66aefuvtISkpav379ixcvtFv19PR0D0B7XNfj/0gAAHgHKQsAQP9EU1bz6NGjL7/8Mi0tzel0pqenT506VXuQ1mXYsGHh4eFnz55ds2bNmw/G9is6Orqurs6z/1QAAHgaKQsAQP9EUzY3N3fVqlWuc4lnzJgRGhq6bdu2p0+fvvmo7PPnz+12e1FRUVRU1NGjR7U/Sk1N/eqrr7Kzs7u7u4uLiyMiIhISErq7u7XLa73yLwYAgMeQsgAA9E/6BGO73X7v3r0NGzacO3dOS9Po6GjXucSaU6dOuU4wLisr+/LLL4cNGzZy5MiRI0dqGTxixIiRI0eOGDHivffe27dvn+f+dQAA8CpSFgCA/nnlBGMtTV20E4xdKRsTE3PkyJGurq6uri7Xo7JdXV1FRUURERGkLABg6CBlAQDon8dS9rvvvjt+/HhYWNi2bduys7M7+zh+/Lj2qOzt27cXLFgwbNiw4cOH+/j4+Pj4aC8nO2LECB8fn5EjR2onKrue7hgAAHMjZQEA6J9nUnbp0qXjx48/ceJESkrKW04wdjgcXV1dfSs3NTV169atWVlZfd/Y3d3N8xgDAIYCUhYAgP79dj/lz9j5/0LKxs7/9dGP/f4V6enpUVFR2dnZPT096enprpS9ePHizJkzR40aNXz48G+++SYzM/OTTz4Z9b+05zceOXKk7u0xMTE2m82z/1QAAHgaKQsAQP9+zb3/ev/Kf56yr/ct/zXnbr9/hfY6sdrjqLr/3dnZ2dHR0dHRob1gbFdXV4ea7u5unsEYAGB6pCwAAAPo7vjt1pl/+sBs9JzfLx36uaXe258MAACmQsoCADCwHvsv5Xm/3Uv+7XrSO+/WmV+zLv9S8dLZ2e7kYVIAAP5VpCwAAG/V63D29Dh77O7M0UPEAgAggZQFAAAAAAwypCwAAAAAYJAhZQEAAAAAgwwpCwAAAAAYZEhZAAAAAMAgQ8oCAAAAAAYZUhYAAAAAMMiQsgAAAACAQYaUBQAAAAAMMqQsAAAAAGCQIWUBAAAAAIMMKQsAAAAAGGRIWQAAAADAIEPKAgAAAAAGGVIWAAAAADDIkLIAAAAAgEGGlAUAAAAADDKkLAAAAABgkCFlAQAAAACDDCkLAAAAABhkSFkAAAAAwCBDygIAAAAABhlSFgAAAAAwyJCyAAAAAIBBhpQFAAAAAAwypCwAAAAAYJAhZQEAAAAAgwwpCwAAAAAYZEhZAAAAAMAgQ8oCAAAAAAYZUhYAAAAAMMiQsgAAAACAQYaUBQAAAAAMMqQsAAAAAGCQIWUBAAAAAIMMKQsAAAAAGGRIWQAAAADAIEPKAgAAAAAGGVIWAAAAADDIkLIAAAAAgEGGlAUAAAAADDKkLAAAAABgkCFlAQAAAACDDCkLAAAAABhkSFkAAAAAwCDTT8pmZWXNmTMnLy/P4XC43rh169agoKAZM2asW7euo6PDg/cQAAAAAID/0U/KhoSEvPfeez/99JMrZfft2xcUFFRQUFBeXh4cHBwXF9fZ2enZ+wkAAAAAwP+nT9nTp08vXbpUl7KBgYFnz5612+1Op/PChQv+/v4tLS2evqcAAAAAADidTl3KZmVlBQYG3rp1a9SoUa6UzcrKGj16dG1tbW9vr9Pp7Ojo8PPzu3XrVk9Pj3fuMgAAAABgaPuflA0JCdm7d29ubu7o0aNdKZuWlubj49Pa2up6Nz8/vxMnTnR3d3v6zgIAAAAA0DdltVOLa2trCwsL+6ZscnKyLmVnzpyZlJT0lpS9llN94VlVd49joHcAAAAAAMBt/z9ly8rKJk2aZLFYent7/zZl33///WPHjg2UsiW1rQsOPZq17/5POfkFADD0NF4/+/vpqD9PfcVMv95zuyqy7nn7iAMAwLQqKir+JmWPHz8+YsSIGTNmBAUFTZ069T//+c/kyZNTU1Ptdvvt27dHjRqlO8H4woUL2rNAvSmnsmnanrv+X9+69Di/8pW1ChBQUVGRm5tbUVHh7TsC0yotLS0oKCgvL3fjtl0ZZ16f3Prn2Rhm+v16Znt9TqZ7x5jFYnH7GANUlJaW5ufnV1ZWevuOwJysVqvFYsnLy/P2HYFpWa3W4uLi0tLSv0nZxsbG0tJSi8VisVhu3brl4+Nz6dKlhoaG3t7e9vb2MWPG3L59W3uep+zs7NGjR9fU1GjPAvWmF3+l7PXn5Z1d3T2AgNbW1pcvX7a0tHj7jsC0GhoaysrKmpqa3Ljtrw/S/zz1ldcri3lgf/zwde+rIveOMZvNVl5e3tzc7N7Ngb9VX19fUlLS1tbm7TsCc+ru7tauTPT2HYFp2e12q9X69ynbl+4EY6fTuX79+oULF7a3tzudzrCwsJUrV2r/++0pe+NFpZ3LZSGjvb29oKDgLcch8A81NTWVl5e798Jjvz/6kZQdInt9bscvVcXuHWMNDQ0VFRV9T3oC/l2NjY0lJSWdnZ3eviMwJ4fDYbPZioqKvH1HYFoOh6OqquqfpmxdXd2yZctmzZo1c+bMjz76qLy8fKCHZJ2kLDyClIU0UpapjJSFkZGyEEXKQpo7KdvV1VVaWqr7wlddXa2dfmy1Wt/SsU5SFh5BykIaKctURsrCyEhZiCJlIc2dlP2HSFl4ACkLaaQsUxkpCyMjZSGKlIU0UhbmRMpCGinLVEbKwshIWYgiZSGNlIU5kbKQRsoylZGyMDJSFqJIWUgjZWFOpCykkbJMZaQsjIyUhShSFtJIWZgTKQtppCxTGSkLIyNlIYqUhTRSFuZEykIaKctURsrCyEhZiCJlIY2UhTmRspBGyjKVkbIwMlIWokhZSCNlYU6kLKSRskxlpCyMjJSFKFIW0khZmBMpC2mkLFMZKQsjI2UhipSFNFIW5kTKQhopy1RGysLISFmIImUhjZSFOZGykEbKMpWRsjAyUhaiSFlII2VhTqQspJGyTGWkLIyMlIUoUhbSSFmYEykLaaQsUxkpCyMjZSGKlIU0UhbmRMpCGinLVEbKwshIWYgiZSGNlIU5kbKQRsoylZGyMDJSFqJIWUgjZWFOpCykkbJMZaQsjIyUhShSFtJIWZgTKQtppCxTGSkLIyNlIYqUhTRSFuZEykIaKctURsrCyEhZiCJlIY2UhTmRspBGyjKVkbIwMlIWokhZSCNlYU6kLKSRskxlpCyMjJSFKFIW0khZmBMpC2mkLFMZKQsjI2UhipSFNFIW5kTKQhopy1RGysLISFmIImUhjZSFOZGykEbKMpWRsjAyUhaiSFlII2VhTqQspJGyTGWkLIyMlIUoUhbSSFmYEykLaaQsUxkpCyMjZSGKlIU0UhbmRMpCGinLVEbKwshIWYgiZSGNlIU5kbKQRsoylZGyMDJSFqJIWUgjZWFOpCykkbJMZaQsjIyUhShSFtJIWZgTKQtppCxTGSkLIyNlIYqUhTRSFuZEykIaKctURsrCyEhZiCJlIY2UhTmRspBGyjKVkbIwMlIWokhZSCNlYU6kLKSRskxlpCyMjJSFKFIW0khZmBMpC2mkLFMZKQsjI2UhipSFNFIW5kTKQhopy1RGysLISFmIImUhjZSFOZGykEbKMpWRsjAyUhaiSFlII2VhTqQspJGyTGWkLIyMlIUoUhbSSFmYEykLaaQsUxkpCyMjZSGKlIU0UhbmRMpCGinLVEbKwshIWYgiZSGNlIU5kbKQRsoylZGyMDJSFqJIWUgjZWFOpCykkbJMZaQsjIyUhShSFtJIWZgTKQtppCxTGSkLIyNlIYqUhTRSFuZEykIaKctURsrCyEhZiCJlIY2UhTmRspBGyjKVkbIwMlIWokhZSCNlYU6kLKSRskxlpCyMjJSFKFIW0khZmBMpC2mkLFMZKQsjI2UhipSFNFIW5kTKQhopy1RGysLISFmIImUhjZSFOZGykEbKMpWRsjAyUhaiSFlII2VhTqQspJGyTGWkLIyMlIUoUhbSSFmYEykLaaQsUxkpCyMjZSGKlIU0UhbmRMpCGinLVEbKwshIWYgiZSGNlIU5kbKQRsoylZGyMDJSFqJIWUgjZWFOpCykkbJMZaQsjIyUhShSFtJIWZgTKQtppCxTGSkLIyNlIYqUhTRSFuZEykIaKctURsrCyEhZiCJlIY2UhTmRspBGyjKVkbIwMlIWokhZSCNlYU6kLKSRskxlpCyMjJSFKFIW0khZmBMpC2mkLFMZKQsjI2UhipSFNFIW5kTKQhopy1RGysLISFmIImUhjZSFOZGykEbKMpWRsjAyUhaiSFlII2VhTqQspJGyTGWkLIyMlIUoUhbSSFmYEykLaaQsUxkpCyMjZSGKlIU0UhbmRMpCGinLVEbKwshIWYgiZSGNlIU5kbKQRsoylZGyMDJSFqJIWUgjZWFOpCykkbJMZaQsjIyUhShSFtJIWZgTKQtppCxTGSkLIyNlIYqUhTRSFuZEykIaKctURsrCyEhZiCJlIY2UhTmRspBGyjKVkbIwMlIWokhZSCNlYU6kLKSRskxlpCyMjJSFKFIW0khZmBMpC2mkLFMZKQsjI2UhipSFNFIW5kTKQhopy1RGysLISFmIImUhjZSFOZGykEbKMpWRsjAyUhaiSFlII2VhTqQspJGyTGWkLIyMlIUoUhbSSFmYEykLaaQsUxkpCyMjZSGKlIU0UhbmRMpCGinLVEbKwshIWYgiZSGNlIU5kbKQRsoylZGyMDJSFqJIWUh7t5SNi4tbs2bN6tWr09LS7HZ73z86dOjQ559/vnr16oSEhK6urrf8laQsPICUhTRSlqmMlIWRkbIQRcpC2juk7MGDBxcuXHjlypUbN24EBwenpqa6avb7778PDg6+fPnyjRs35s2bd/To0e7u7oE+IikLDyBlIY2UZSojZWFkpCxEkbKQppqyVqt18uTJycnJWr5++eWXS5YscXXCrFmzEhMTtQdjjx8/Pn369Ld86yVl4QGkLKSRskxlpCyMjJSFKFIW0lRTtrW19datW01NTb29vU6n88CBA9OnT29ra3M6nfn5+aNHjy4rK9P+yGazjRkzJjMzs6enp9+PSMrCA0hZSCNlmcpIWRgZKQtRpCykufO0T1VVVfPmzYuJidG+9l24cMHHx6fv91o/P78zZ84MdI4xKQsPIGUhjZRlKiNlYWSkLESRspD2zil7+PDhTz/9dMKECYWFhQ6Hw+l0Jicn61J2+vTpx48fJ2XhRaQspJGyTGWkLIyMlIUoUhbS3jllnz59mpGRsXPnzi+++MJisfT29r6ZsgEBASope/FJsa2+oREQUFtbm5+fX1NT4+07AtOyWq3FxcXV1dVu3NZx+4fXJ7d6vbKYB/b793Fthc/cO8ZevXpVUlLi3jEGqHj16lVhYWFdXZ237wjMqaGhobKy8uXLl96+IzCthoaGsrKyd35d2crKytGjR2svyZORkTFq1CjdCcZvvlrPmymbci+npLQMkGCxWHJyckpKSrx9R2BaxcXF+fn5xcXFbty2/dpJUnaI7NczMbU/3XfvGCsqKsrPz+frGOQUFRXl5eVZLBZv3xGYVlFRUW5urrfvBcysoKDg71M2Pz8/IiKitLRUe24np9M5ZswY7aFXm83m6+v75MkT7Xzj/Px8X19f7QHbt6fs5WxLU3NLKyCgvr4+Pz+/vr7e23cEplVTU1NSUlJXV+fGbXvvJr8+yQnGQ2K/fx/XZcl17xirqqqyWCzuHWOAiurq6qKiooaGBm/fEZhTS0uL1WotKCjw9h2BabW0tJSXl/99ytbV1U2ZMuWbb77RThs+d+5cYGBgQUGBlq/h4eGrVq3q6OhwOp0REREhISFvuUaRa2XhAVwrC2lcK8tUxrWyMLJGrpWFJK6VhbR3uFb2/v37ixYtWrt27RdffPHf//43IyPD9XI7eXl5S5Ys0f5owYIFT548GeiVeJykLDyClIU0UpapjJSFkZGyEEXKQtq7Pe3T/fv3r127dvXq1du3b+tiNTs7W/ujx48fv6VjnaQsPIKUhTRSlqmMlIWRkbIQRcpCmjuvK/sPkbLwAFIW0khZpjJSFkZGykIUKQtppCzMiZSFNFKWqYyUhZGRshBFykIaKQtzImUhjZRlKiNlYWSkLESRspBGysKcSFlII2WZykhZGBkpC1GkLKSRsjAnUhbSSFmmMlIWRkbKQhQpC2mkLMyJlIU0UpapjJSFkZGyEEXKQhopC3MiZSGNlGUqI2VhZKQsRJGykEbKwpxIWUgjZZnKSFkYGSkLUaQspJGyMCdSFtJIWaYyUhZGRspCFCkLaaQszImUhTRSlqmMlIWRkbIQRcpCGikLcyJlIY2UZSojZWFkpCxEkbKQRsrCnEhZSCNlmcpIWRgZKQtRpCykkbIwJ1IW0khZpjJSFkZGykIUKQtppCzMiZSFNFKWqYyUhZGRshBFykIaKQtzImUhjZRlKiNlYWSkLESRspBGysKcSFlII2WZykhZGBkpC1GkLKSRsjAnUhbSSFmmMlIWRkbKQhQpC2mkLMyJlIU0UpapjJSFkZGyEEXKQhopC3MiZSGNlGUqI2VhZKQsRJGykEbKwpxIWUgjZZnKSFkYGSkLUaQspJGyMCdSFtJIWaYyUhZGRspCFCkLaaQszImUhTRSlqmMlIWRkbIQRcpCGikLcyJlIY2UZSojZWFkpCxEkbKQRsrCnEhZSCNlmcpIWRgZKQtRpCykkbIwJ1IW0khZpjJSFkZGykIUKQtppCzMiZSFNFKWqYyUhZGRshBFykIaKQtzImUhjZRlKiNlYWSkLESRspBGysKcSFlII2WZykhZGBkpC1GkLKSRsjAnUhbSSFmmMlIWRkbKQhQpC2mkLMyJlIU0UpapjJSFkZGyEEXKQhopC3MiZSGNlGUqI2VhZKQsRJGykEbKwpxIWUgjZZnKSFkYGSkLUaQspJGyMCdSFtJIWaYyUhZGRspCFCkLaaQszImUhTRSlqmMlIWRkbIQRcpCGikLcyJlIY2UZSojZWFkpCxEkbKQRsrCnEhZSCNlmcpIWRgZKQtRpCykkbIwJ1IW0khZpjJSFkZGykIUKQtppCzMiZSFNFKWqYyUhZGRshBFykIaKQtzImUhjZRlKiNlYWSkLESRspBGysKcSFlII2WZykhZGBkpC1GkLKSRsjAnUhbSSFmmMlIWRkbKQhQpC2mkLMyJlIU0UpapjJSFkZGyEEXKQhopC3MiZSGNlGUqI2VhZKQsRJGykEbKwpxIWUgjZZnKSFkYGSkLUaQspJGyMCdSFtJIWaYyUhZGRspCFCkLaaQszImUhTRSlqmMlIWRkbIQRcpCGikLcyJlIY2UZSojZWFkpCxEkbKQRsrCnEhZSCNlmcpIWRgZKQtRpCykkbIwJ1IW0khZpjJSFkZGykIUKQtppCzMiZSFNFKWqYyUhZGRshBFykIaKQtzImUhjZRlKiNlYWSkLESRspBGysKcSFlII2WZykhZGBkpC1GkLKSRsjAnUhbSSFmmMlIWRkbKQhQpC2mkLMyJlIU0UpapjJSFkZGyEEXKQhopC3MiZSGNlGUqI2VhZKQsRJGykEbKwpxIWUgjZZnKSFkYGSkLUaQspJGyMCdSFtJIWaYyUhZGRspCFCkLaaQszImUhTRSlqmMlIWRkbIQRcpCGikLcyJlIY2UZSojZWFkpCxEkbKQRsrCnEhZSCNlmcpIWRgZKQtRpCykkbIwJ1IW0khZpjJSFkZGykIUKQtppCzMiZSFNFKWqYyUhZGRshBFykIaKQtzImUhjZRlKiNlYWSkLESRspBGysKcSFlII2WZykhZGBkpC1GkLKSRsjAnUhbSSFmmMlIWRkbKQhQpC2mkLMyJlIU0UpapjJSFkZGyEEXKQhopC3MiZSGNlGUqI2VhZKQsRJGykEbKwpxIWUgjZZnKSFkYGSkLUaQspJGyMCdSFtJIWaYyUhZGRspCFCkLaaQszImUhTRSlqmMlIWRkbIQRcpCGikLcyJlIY2UZSojZWFkpCxEkbKQRsrCnEhZSCNlmcpIWRgZKQtRpCykkbIwJ1IW0khZpjJSFkZGykIUKQtppCzMiZSFNFKWqYyUhZGRshBFykIaKQtzImUhjZRlKiNlYWSkLESRspD2Dilrs9kOHTqUmJiYmJiYnJxst9v7vt/58+f379+v/VF3d/db/kpSFh5AykIaKctURsrCyEhZiCJlIe0dUjYuLi40NHT//v2HDh368MMPv//+e1fN3rx587///W9iYuKhQ4fmz59/8eJFXej2RcrCA0hZSCNlmcpIWRgZKQtRpCykqaZsbm5uQEDAnTt3enp6nE7nzp07p02b1tbWpv3pokWLtm3bpn0p3LVr17x581x/9CZSFh5AykIaKctURsrCyEhZiCJlIU01ZfPy8s6cOeM6c/jevXs+Pj5lZWW9vb3l5eW+vr55eXkOh8PpdFZUVPj6+ubk5Gj/902kLDyAlIU0UpapjJSFkZGyEEXKQpqbT/uUlJTk7+9fXl7e29t75coVHx+fvt9r/fz8zp07N9A5xqQsPICUhTRSlqmMlIWRkbIQRcpCmjspm5eXt3Dhwq+++kr72pecnKxL2cmTJx8/fnygJ38iZeEBpCykkbJMZaQsjIyUhShSFtLeOWXLy8s///zzpUuXFhQUaKcQk7IwIFIW0khZpjJSFkZGykIUKQtp75ayeXl5kZGRS5cudT3/k9PpdPsE4x8fvrRWVdcAAiorK3NzcysrK924bUNZsfPh+d9unWGmnz07o768xL1jrLy8vKCgoKKiwo3bdmWcfX1yq9cri3lgv53d3piX5d4xVlZWVlhY6N4xBqgoKyt7+fLlq1evvH1HYE5aY+Tn57tx29oqa2vBU6//nMA8sF/v/NCel+neMVZdXV1SUmKxWP4+ZfPy8tasWRMeHn737l1XxzqdTt3TPmn/Nzc392+f9in1fm5pWXkFIKC0tDQ3N9disbhx29qfHvyS8MmfWz9gpl/P8S01zx+7d4yVlJS8fPnSvWOs49opUnaI7Ncz2+uePXTvGCsuLnb7GANUFBcX5+XllZaWevuOwJzKy8uLiopyc3PduO2rkqLm62e8/nMC88BeRwe3Xjrq9jFWWFj49ylbX1+/du3aJUuWZGVlvdmo7r0Yz7VnZe0dnV2AgObm5pcvXzY1Nblx257yl398E+71/7CZB/bbme09r4rdO8ZsNltpaWlDQ4Mbt/3lfhonGA+R/fHD1z3lBe4dY3V1dWVlZY2Nje7dHPhbdXV1xcXFLS0t3r4jMKeOjo6amprCwkI3btvd2uR8fNHrPycwD+x1zNyf7/zg3jHW2dn56tWrvz/B+OrVqyNHjly0aNH+/fsP/aWqqqq3t9fpdN66dWvBggWJiYmHDh2aP3/+xYsXBzq72Mm1svCIf3Kt7C9VJa8TV3j9P2zmgf3+fezPNWXuHWNcK8tUxrWyMDKulYWof3StbFfHr1lXvP5zAvPEYub+di/F7WNM6VrZzMzMAwcOJP4vV8o6nc7z58/v378/MTExOTl5oCd80pCy8ABSlqmMlGXSI2VhZKQsRJGyTGkeSNl/ESkLDyBlmcpIWSY9UhZGRspCFCnLlEbKAjqkLFMZKcukR8rCyEhZiCJlmdJIWUCHlGUqI2WZ9EhZGBkpC1GkLFMaKQvokLJMZaQskx4pCyMjZSGKlGVKI2UBHVKWqYyUZdIjZWFkpCxEkbJMaaQsoEPKMpWRskx6pCyMjJSFKFKWKY2UBXRIWaYyUpZJj5SFkZGyEEXKMqWRsoAOKctURsoy6ZGyMDJSFqJIWaY0UhbQIWWZykhZJj1SFkZGykIUKcuURsoCOqQsUxkpy6RHysLISFmIImWZ0khZQIeUZSojZZn0SFkYGSkLUaQsUxopC+iQskxlpCyTHikLIyNlIYqUZUojZQEdUpapjJRl0iNlYWSkLESRskxppCygQ8oylZGyTHqkLIyMlIUoUpYpjZQFdEhZpjJSlkmPlIWRkbIQRcoypZGygA4py1RGyjLpkbIwMlIWokhZpjRSFtAhZZnKSFkmPVIWRkbKQhQpy5RGygI6pCxTGSnLpEfKwshIWYgiZZnSSFlAh5RlKiNlmfRIWRgZKQtRpCxTGikL6J9dltkAACAASURBVJCyTGWkLJMeKQsjI2UhipRlSiNlAR1SlqmMlGXSI2VhZKQsRJGyTGmkLKBDyjKVkbJMeqQsjIyUhShSlimNlAV0SFmmMlKWSY+UhZGRshBFyjKlkbKADinLVEbKMumRsjAyUhaiSFmmNFIW0CFlmcpIWSY9UhZGRspCFCnLlEbKAjqkLFMZKcukR8rCyEhZiCJlmdJIWUCHlGUqI2WZ9EhZGBkpC1GkLFMaKQvokLJMZaQskx4pCyMjZSGKlGVKI2UBHVKWqYyUZdIjZWFkpCxEkbJMaaQsoEPKMpWRskx6pCyMjJSFKFKWKY2UBXRIWaYyUpZJj5SFkZGyEEXKMqWRsoAOKctURsoy6ZGyMDJSFqJIWaY0UhbQIWWZykhZJj1SFkZGykIUKcuURsoCOqQsUxkpy6RHysLISFmIImWZ0khZQIeUZSojZZn0SFkYGSkLUaQsUxopC+iQskxlpCyTHikLIyNlIYqUZUojZQEdUpapjJRl0iNlYWSkLESRskxppCygQ8oylZGyTHqkLIyMlIUoUpYpjZQFdEhZpjJSlkmPlIWRkbIQRcoypZGygA4py1RGyjLpkbIwMlIWokhZpjRSFtAhZZnKSFkmPVIWRkbKQhQpy5RGygI6pCxTGSnLpEfKwshIWYgiZZnSSFlAh5RlKiNlmfRIWRgZKQtRpCxTGikL6JCyTGWkLJMeKQsjI2UhipRlSiNlAR1SlqmMlGXSI2VhZKQsRJGyTGmkLKBDyjKVkbJMeqQsjIyUhShSlimNlAV0SFmmMlKWSY+UhZGRshBFyjKlkbKADinLVEbKMumRsjAyUhaiSFmmNFIW0CFlmcpIWSY9UhZGRspCFCnLlEbKAjqkLFMZKcukR8rCyEhZiCJlmdJIWUCHlGUqI2WZ9EhZGBkpC1GkLFMaKQvokLJMZaQskx4pCyMjZSGKlGVKI2UBHVKWqYyUZdIjZWFkpCxEkbJMaaQsoEPKMpWRskx6pCyMjJSFKFKWKY2UBXRIWaYyUpZJj5SFkZGyEEXKMqWRsoAOKctURsoy6ZGyMDJSFqJIWaY0UhbQIWWZykhZJj1SFkZGykIUKcuURsoCOqQsUxkpy6RHysLISFmIImWZ0khZQIeUZSojZZn0SFkYGSkLUaQsUxopC+iQskxlpCyTHikLIyNlIYqUZUojZQEdUpapjJRl0iNlYWSkLESRskxppCygQ8oylZGyTHqkLIyMlIUoUpYpjZQFdEhZpjJSlkmPlIWRkbIQRcoypZGygA4py1RGyjLpkbIwMlIWokhZpjRSFtAhZZnKSFkmPVIWRkbKQhQpy5RGygI6pCxTGSnLpEfKwshIWYgiZZnSSFlAh5RlKiNlmfRIWRgZKQtRpCxTGikL6JCyTGWkLJMeKQsjI2UhipRlSiNlAR1SlqmMlGXSI2VhZKQsRJGyTGmkLKBDyjKVkbJMeqQsjIyUhShSlimNlAV0SFmmMlKWSY+UhZGRshBFyjKlkbKADinLVEbKMumRsjAyUhaiSFmmNFIW0CFlmcpIWSY9UhZGRspCFCnLlEbKAjqkLFMZKcukR8rCyEhZiCJlmdJIWUCHlGUqI2WZ9EhZGBkpC1GkLFOah1M2Ozu7rKzM4XDo3njt2rWrV68+fvy4p6fnLX8lKQsPIGWZykhZJj1SFkZGykIUKcuU5smUzc3N/fDDD0+cONHd3d33jUuWLFm7du26desWLFjw5MmTt9QsKQsPIGWZykhZJj1SFkZGykIUKcuU5rGUffDgwccff+zr65uUlNQ3ZcPDw1etWtXR0eF0OiMiIkJCQt6SEKQsPICUZSojZZn0SFkYGSkLUaQsU5pnUrayslJ76HXq1Kl9U7aurs7X1/fJkyfaKccvX7709fW1WCy9vb39fkRSFh5AyjKVkbJMeqQsjIyUhShSlinNMyn78OHDM2fOdHd3z549u2/KZmRkjBo1qu/3Wj8/v7S0NLvd3u9HJGXhAaQsUxkpy6RHysLISFmIImWZ0jz8tE+6lE1OTvbx8en7vTYgIOD48eN9z0Dui5SFB5CyTGWkLJMeKQsjI2UhipRlSjNayk6fPl0lZS9nW5qaW9oAAfX19fn5+fX19W7cttOS8/s34d7/D5vJ75fT0Z1lL907xmpqakpKSurq6ty4be/d5NcnSdkhsd+/j+uy5Lp3jFVVVVksFveOsU5btaMsr7fkOTP97FaLewdYW1tbdXV1UVFRQ0ODe8eY1z935oE5SnO6ayrcO8BaWlqsVmtBQYEbt21vsPU8+NHrPycwD+x1zFzHzbNuH2Pl5eX/KGUvXLigS1k/Pz/tVOS3p2zKvZyS0jJAgsViycnJKSkpceO21U/v/ZLwsdf/w2YemP3Ylupnj9w7xoqLi/Pz84uLi924bfu1k69PbvV6ZTEP7NczMbU/3XfvGCsqKsrPz3fv65jt7oWeQ+t/3vMxM/3aUr5x7wDTjrG8vDyLxeLGbevuX/b65848sN7EVc0Xj/6TYyw3N9eNG1YUFzRdO+31nxOYB/ZHdHDLhSNuH2MFBQX/KGXz8/NHjx5dVlamPc+TzWYbM2ZMZmbmQK/H40rZi0+KbfUNjYCA2tra/Pz8mpoaN27bWvDTb/uWe/0/bOaB/XwyqrU4x71jzGq1FhcXV1dXu3Fbx+0fSNkhst+/j2srfObeMfbq1auSkhL3jrGuhxd/jw/1+n9izAPr/f5r9w4w7RgrLCysq6tz47adjzn5c0js9fYPe1P3uneANTQ0VFZWvnz50o3bNtVWdd1N9fqnzzyw19Fz7Rmn3D7GysrK/lHKam9JTEzs6upyOp3Hjh2bPn36W67t4VpZeADXyjKVca0sk563rpX99dnN13uWef0/MeaB/Z62x70DzPnPrpX9Neeu1z935onFzv/94kH3DjCulWVK8+61sk6n8/vvvw8ODr58+fKNGzfmzZt39OjRgc4udpKy8AhSlqmMlGXSI2WZ9EhZJjtSlknPwykbFxd369Yt3fnDhw4dWrt27Zo1axISErSHZwdCysIDSFmmMlKWSY+UZdIjZZnsSFkmPQ+n7D9EysIDSFmmMlKWSY+UZdIjZZnsSFkmPVIW0CFlmcpIWSY9UpZJj5RlsiNlmfRIWUCHlGUqI2WZ9EhZJj1SlsmOlGXSI2UBHVKWqYyUZdIjZZn0SFkmO1KWSY+UBXRIWaYyUpZJj5Rl0iNlmexIWSY9UhbQIWWZykhZJj1SlkmPlGWyI2WZ9EhZQIeUZSojZZn0SFkmPVKWyY6UZdIjZQEdUpapjJRl0iNlmfRIWSY7UpZJj5QFdEhZpjJSlkmPlGXSI2WZ7EhZJj1SFtAhZZnKSFkmPVKWSY+UZbIjZZn0SFlAh5RlKiNlmfRIWSY9UpbJjpRl0iNlAR1SlqmMlGXSI2WZ9EhZJjtSlkmPlAV0SFmmMlKWSY+UZdIjZZnsSFkmPVIW0CFlmcpIWSY9UpZJj5RlsiNlmfRIWUCHlGUqI2WZ9EhZJj1SlsmOlGXSI2UBHVKWqYyUZdIjZZn0SFkmO1KWSY+UBXRIWaYyUpZJj5Rl0iNlmexIWSY9UhbQIWWZykhZJj1SlkmPlGWyI2WZ9EhZQIeUZSojZZn0SFkmPVKWyY6UZdIjZQEdUpapjJRl0iNlmfRIWSY7UpZJj5QFdEhZpjJSlkmPlGXSI2WZ7EhZJj1SFtAhZZnKSFkmPVKWSY+UZbIjZZn0SFlAh5RlKiNlmfRIWSY9UpbJjpRl0iNlAR1SlqmMlGXSI2WZ9EhZJjtSlkmPlAV0SFmmMlKWSY+UZdIjZZnsSFkmPVIW0CFlmcpIWSY9UpZJj5RlsiNlmfRIWUCHlGUqI2WZ9EhZJj1SlsmOlGXSI2UBHVKWqYyUZdIjZZn0SFkmO1KWSY+UBXRIWaYyUpZJj5Rl0iNlmexIWSY9UhbQIWWZykhZJj1SlkmPlGWyI2WZ9EhZQIeUZSojZZn0SFkmPVKWyY6UZdIjZQEdUpapjJRl0iNlmfRIWSY7UpZJj5QFdEhZpjJSlkmPlGXSI2WZ7EhZJj1SFtAhZZnKSFkmPVKWSY+UZbIjZZn0SFlAh5RlKiNlmfRIWSY9UpbJjpRl0iNlAR1SlqmMlGXSI2WZ9EhZJjtSlkmPlAV0SFmmMlKWSY+UZdIjZZnsSFkmPVIW0CFlmcpIWSY9UpZJj5RlsiNlmfSGWsr+UlnwS1kuM/+qSpz2LvcOM1KWqYyUZdIjZZn0SFkmO1KWSW+opezrHR95/x+dye+PQ5//bHvl3mFGyjKVkbJMeqQskx4py2RHyjLpkbLMlCNlmfRIWSY9UpZJj5RlsiNlmfRIWWbKkbJMeqQskx4py6RHyjLZkbJMeqQsM+VIWSY9UpZJj5Rl0iNlmexIWSY9UpaZcqQskx4py6RHyjLpkbJMdqQskx4py0w5UpZJj5Rl0iNlmfRIWSY7UpZJj5Rlphwpy6RHyjLpkbJMeqQskx0py6RHyjJTjpRl0iNlmfRIWSY9UpbJjpRl0iNlmSlHyjLpkbJMeqQskx4py2RHyjLpkbLMlCNlmfRIWSY9UpZJj5RlsiNlmfRIWWbKkbJMeqQskx4py6RHyjLZkbJMeqQsM+VIWSY9UpZJj5Rl0iNlmexIWSY9UpaZcqQskx4py6RHyjLpkbJMdqQskx4py0w5UpZJj5Rl0iNlmfRIWSY7UpZJj5Rlphwpy6RHyjLpkbJMeqQskx0py6RHyjJTjpRl0iNlmfRIWSY9UpbJjpRl0iNlmSlHyjLpkbJMeqQskx4py2RHyjLpkbLMlCNlmfRIWSY9UpZJj5RlsiNlmfRIWWbKkbJMeqQskx4py6RHyjLZkbJMeqQsM+VIWSY9UpZJj5Rl0iNlmexIWSY9UpaZcqQskx4py6RHyjLpkbJMdqQskx4py0w5UpZJj5Rl0iNlmfRIWSY7UpZJj5Rlphwpy6RHyjLpkbJMeqQskx0py6RHyjJTjpRl0iNlmfRIWSY9UpbJjpRl0iNlmSlHyjLpkbJMeqQskx4py2RHyjLpkbLMlCNlmfRIWSY9UpZJj5RlsiNlmfRIWWbKkbJMeqQskx4py6RHyjLZkbJMeqQsM+VIWSY9UpZJj5Rl0iNlmexIWSY9UpaZcqQskx4py6RHyjLpkbJMdqQskx4py0w5UpZJj5Rl0iNlmfRIWSY7UpZJj5Rlphwpy6RHyjLpkbJMeqQskx0py6RHyjJTjpRl0iNlmfRIWSY9UpbJjpRl0iNlmSlHyjLpkbJMeqQskx4py2RHyjLpkbLMlCNlmfRIWSY9UpZJj5RlsiNlmfRIWWbKkbJMeqQskx4py6RHyjLZkbJMeqQsM+VIWSY9UpZJj5Rl0iNlmexIWSY9UpaZcqQskx4py6RHyjLpkbJMdqQsk54RUra6utpisVgsFqvV2tvb+5b3JGWZ4khZJj1SlkmPlGXSI2WZ7EhZJj2vp2xdXd2yZctmzZo1c+bMjz76qLy8/C01S8oyxZGyTHqkLJMeKcukR8oy2ZGyTHpeT9n169cvXLhQy4awsLCVK1e+JSFIWaY4UpZJj5Rl0iNlmfRIWSY7UpZJz7sp297ePmbMmNu3b/f09Didzuzs7NGjR9fU1Az0wCwpyxRHyjLpkbJMeqQskx4py2RHyjLpeTdlb9++PWrUqL7fa/38/C5cuGC32/t9f1KWKY6UZdIjZZn0SFkmPVKWyY6UZdLzbsomJyf7+Pj0/V77/vvvHzt2rLu7u9/3d6Xs9eflnd3dPe/uj/iQ19HBzPT7/dv1vbUVbhwhPT09ra2tL1++bGlpceO2vZWFf5CyQ2O/nY3trbK4d4w1NDSUlZU1NTW5cdtfHp1/feqrP89EMdPvj+Sdva+K3TvGbDZbeXl5c3OzG7f9+dmtP/Yt9/qXceaB/Zq+170DrKenp76+vqSkpK2tzY3bOl/c9frnzjywP3Ys+vXSYfcOsO7u7tra2sLCQjdu62hv/Tnzktd/TmCeWMzcX+6ec+8Ys9vtVqv1X07ZmTNnJiUlDZSyOX+l7KXHLytfWaveXefZnV0nopjp155+oLb4pRtHSFVVVUVFRW5ubkVFhRu3rX/x+NeET7z/HzaTnyNpa31elnvHWFlZWUFBQXl5uRu3bX581Xlu169nopnpZ7/4bV1hjnvHWGlpaWFhoXvHWP3Tux3n9nj9yzjzwFoyzrp3gGnHWH5+fmVlpTvH2E/3vf65Mw+s83Rc860U9w4wq9VqsVjy8vLcuG11eWnrjR+8/nMC88BeRwd3XDnu9jFWXFz8j1I2LS1Nl7J+fn4nTpwYKGWLa1uDEx9M2HHrwt3sjIdPGTPa7l+9WrH789qvFjPTr+hg9L3r171+yDHGGGOs727ee/z0XJLXf05gHlh1dOjzM9+6fajcePTTk5yiHkf/T9L09ymblZU1evTo2tpa7XmeOjo6/Pz8bt261dPTM9BNdl0pmLLrtv/XtxhjjDHGGGOMMTc2YcetxYcflte3uZmyTqczMDDw7Nmz2vM8Xbhwwd/f/+1PhXLmcXngttRpu24G7b3HmMSmx9+ZEHN5evxtr98TZtZN3XUrMO7atN23vH5PmFk3ddfNwLhr03bzdYxJbequmxNjr87Yc8fr94SZch8k3J2y82bA9itevyfMrPsg4d7kHRkf7Lr+tLzR/ZTdt29fUFCQdtlYcHBwXFzc258Nr6Gta+zYsV+fzjiXWZaSVcHYv779F7OmfvrVN+czvX5PmFkXe/rG4s2Ju5Pvev2eMLPuq2OXQ7cd2pP6wOv3hJl1UUlX563bdfjqM6/fE2bKnXlQEvnthaBV271+T5hZ9/0jy+r402Ebdw5UnUop63Q6t27dGhQUNGPGjHXr1nV0dPzt+48bN871UrTAvy4/P3/WrFkvXrzw9h2BaV2/fn3dunUPHz709h2BaaWnp0dGRj558sTbdwSmdfHixY8//rikpMTbdwTm1Nra+v333y9YsMDbdwSm1dnZuW/fvs8++2ygd1BN2XdFykIUKQtppCykkbKQRspCFCkLaV5LWX9//3v37pGyEFJQUBAcHJyTk+PtOwLTunHjRkRExKNHj7x9R2Ba58+f37p1a1ZWlrfvCEzr8uXL4eHhZWVl3r4jMKe2traUlJRFixZ5+47AtDo7O/fv3//5558P9A5SKbty5UqLxeJwOIQ+Poa4+vr6LVu28JtmyMnJyTl69Gh+fr637whM6+HDh6dOneLrGOQ8fPhw7969TU1N3r4jMKfu7u4nT55ERUV5+47AtLq7u69cuXLgwIGB3kEqZQEAAABzsNvtTU1NbW1tDoejtbW17y8IOjs7a2pqurq6vHj3gKGJlBXX0tLS0NAw0APUDQ0NLS0trj9tb2+32WwDnZjd3t5eU1PDadtDXENDQ1NTk+4waGpqamxs1F4x6y2ampqsVuurv7ieirynp6eurm6gZybX/rS1tVV7cWmYWFtbW3V19auB1dbW9j1OWltb6+vr+76lubm5oaGhu7tb95G7uroaGxsHetbArq6u+vr6trb+XzUOptfZ2dnU1PRmCbS1tdXU1LS2tvZ9Y3d3d319/VuO0levXjU29v+yDRhq7HZ7fX19XV1dvz87dXV1VVVVaceM1Wq12WzNzc26Y6mqqkp7BcqysrKEhIS0tLT6+vrTp0/v2rXL9XEePHgwb968Z8+eee4Tg/HY7faqqqr29va+b3Q4HC0tLXV1dbp37unpcR17/bJarW9/6VNoSFlxycnJ69evr6qq6jcDNmzYcOTIEdfBeuPGjfDw8MrKyjffubq6+vTp02FhYVarVfxOw8B27ty5Y8eO/Px8V7jabLa4uLidO3dWVla63s1ms735lXHPnj3BwcFT/+J6vpnq6upPP/30xo0bb36zb2pqevr0aXh4eHJysu4HSpjP9evXly1b5jpC/P39fX19J0yY4HrL6tWrnz59qr1zT0/P0aNH169fn52d7foIx44di4yMfPr0qe5YysnJiYqKunTp0pu/12tqarp+/fqGDRsuXbok/QnCmLKyshISEu7evdvT09PZ2VlbW6t9yTp69OgHH3ywf/9+7f/W1NS0t7dbLJbt27dP7c+ECRNGjBgxcuTI+Ph4b39O8IKurq6ampq+3/UePXoUHh6+YMGCrKwsXSc0NTVlZmYGBgZOmDBh0qRJ/v7+y5cvP3DggI+Pj+uICgwMnDZt2rFjx7q6urKysqKjo48ePZqbm7t///6tW7fW1tZqX+hIWTidzoqKilmzZp05c6bvG1taWg4dOhQSEqJ755qamo8++migr2P/9//+X39//+TkZA/e/cGKlPWEuXPnXr9+vd8zT3Qp63Q6ly9ffuPGjb7vXFNTY7VaFy5cuGDBgszMzDcf7sBQ0NHRoR0JVqt1zZo1YWFh9+/f1/5vSEjIokWLkpOTi4uLq6urtYMnMjKy71fGMWPG+Pr6Hjt2bKAHK86cObN///6KigrXW5qbm6uqquLj4+fMmZOenl5SUsKDZubW2tpaXV1t7SMlJSUiIuLChQt931hTU6M9uFpRUbFx48aUlBTtcQ/tTx88eLBs2bINGzZkZ2drb2loaNB+7XLkyJGDBw/W1ta6/kbtNIGdO3fOmTPn1KlTXNE3NGlf3BITE1evXl1UVHT37t3Fixf7+/u/+RPesmXLMjIyBvo4bW1tFy9eDAkJWbduHc9vPzTl5eV98skn/eaBzty5c7/77rvMzMzQ0NDbt29brdZdu3ZpKRseHu76gIWFhV9++eWxY8devHgRHBzs5+c3fvz4SZMmjRs3bsyYMStXrszJybFarRcuXJg9e3ZGRob20K4X/wXgFQ6Ho7GxsaysLCUlZerUqVVVVY2Njdp3wMLCwl27di1cuND1PbShoeEtH6euru7HH3+cMGHCF1984clPYfAiZQXZ7Xbt58K9e/fGxMSUlZW1trZWVVX1/aFw1apVe/bsKSwsbGxs1P5o3759MTExhYWFPT09WrosWbJk6tSpDx8+JGKHsocPH/Z9uGzq1KkBAQEjRozo+4jZ1KlT58+f//z58zdvHh8fv3HjxszMzL6Hn9YY2hfcmzdvrl27NiMjo62trampqaqqKiEhITg4eN++fdXV1Z7/fOF5J06cmDZtWkBAgOtwevNR2YCAAO0nNrvdnpKScujQIYvFUlpaunXrVu03JmPGjJk8eXLfY3Lbtm1a1qampsbExGRkZLS3t2sRu3v37qlTp3777bdE7FB29+7dkJCQwMDAMWPGREZG/vjjj9HR0bdv33Y6ne3t7fX19X97CaLdbm9oaDhy5Mi0adOSkpI8cq9hXA6Ho7m52TqAvldJZGZmLl68ODU19aeffvrqq6+0lA0NDXW98/3799euXXvs2DGn01lWVrZ79+5jx47l5eUdPHhw165dpaWlERERU/86HUD74rlx40avfvbwgqampr17906dOnXy5Mnjx48fP3689t1Ne8vYsWNHjhyp/d+goKC4uLh+P0hPT09RUVFkZOSHH374lt/ZQYeUFVReXr5w4cIpU6ZMnDhx2LBh69evP3fu3Lx586b0MWrUqLFjx06aNGnv3r3BwcHaG0eOHDl9+nSr1RoaGjplyhTdWaPt7e1csgin0/n8+fN58+Y9ePCg3z91/XJEExUVNXHixIkTJ/Y9/GJiYiorK3fv3h0UFDRlypSxY8f6+PicO3du3759c+fOTUpKcv3usLW1tbm5+W+vxcWgduLEic2bNz948ED7JVptbe3ly5ejoqJu3rxZW1trtVqrq6vv3r27ZcuWjIyMFy9e7Ny5886dO52dnfX19drVQXFxcXv27NH9ytlms3399dfaIefn5xcQEHD+/PmDBw9OmTIlNTXV9W4tLS3Nzc08F8CQVVJSEhcXd+TIkfv372sp63A4zp0798UXX7z9ddccDsfz5883bNiwcuVKXggaTqfTZrMlJib6+PhMecOECRPmzZt3584d7T0zMzMnTpw4ZsyYkSNHTpo06csvv9ROMHa9f0BAgHaCsdPpfPXq1fbt2ydMmODj4xMUFHT48GHX38gJxtC0tbWdOHFizpw5rnPcBjrBWMfhcBQUFAQFBS1dulT+bpoKKSvObrc/efJk5syZ6enpVVVV2rOkuK4We/ME49ra2o8//njfvn0Wi6XvT3V2u72mpmbZsmXp6em6a8oxRGiXkLnq9MaNG7Nnzz5//nzf3ze7ftm8c+fODz74wPX9eMyYMRs2bCgtLR3ogzc3Nx86dGjdunWPHj3q6Ojo++uSxsbGAwcOxMfH8+KE5paSkrJr167t27cvWLBgypQpISEhMTExUVFRUVFRYWFhU6ZMCQ4Ojo+Pj4+Pv3Pnzt69e3fv3v3y5csff/xxzZo1165dczqdcXFx0dHR+fn5rgOy70npzc3Ne/fujYyMfPToUd8vYtqpWXv37o2Pj3/16pUXPnN4W1dX1+nTp7VqvX//flRU1IULF/Lz86OiojZv3uw6nGw225uP0DY2NiYkJMTGxnrlnsOAtJRdtmzZmw/J3rhxY82aNa6Uffbs2fr16/ft26edZlxfXz/QCcbak/dYrdarV6+GhITcuHGjpqbGZrNpH1Y7wfjGjRtWq1W7ottLnzq8yeFwWCyWTz75pO81roopW19fHxkZqf3SBO+ElJXV2tqamZkZEBDw3Xff3bt3b9OmTWfPnl2xYkVZWZmWCn1TVrteaOrUqbGxsWVlZStWrLD+9QxPbW1tT548mT179ubNm589e8aZxkPTw4cPw8LCJv9lwoQJw4cP9/f3n9yH65mcdOLj46OiovpN2Z6eHpvNFh0dHRoa+vjx4z179ly7dk0rkO7ubpvNtmnTpvnz51++fJlrZYcC7Tljq6qqdI/KVlVVuX5Eq6uri42NDQgIGDdu3EcffXTv3j2n0+lwOLZv3z527FjtUAwMDBw1atSpD34cmQAADIhJREFUU6ecfz3l7NatW5cvX/7w4cODBw9evHhR++s6OzsLCgq+/PLLTz755MqVK5xpPATZ7fZ79+4tWbJk69atVVVVly9f3rhx47Jly8aNG+fr6xsYGOj6+qb9rq3qf718+TImJiYyMlL3dpvNNtCzssPcGhoakpKSJg/g448/fvTokfaenZ2dNpvt4cOHfVM2NDTUdRQ9ePBAO8G4vr7+0KFDvr6+/v7+I0eOHD9+/IwZMz777DPtY/r7+w8fPnzChAmTJ09evHjxlStXvPsvAM/r7e212Wy7du1asmRJZ2dnXV1dQ0NDVVVVUVHR7t27Fy5cqB1RtbW13d3d2mVcfeXn53/xxRf79u3Tvb3vs0ugX6SsoK6urgMHDgQFBQ0bNiw9PX3JkiWPHz+22+1bt27dv39/c3Ozs0/K2u32s2fPzpkzZ8SIEUeOHFm1atWVK1c6Ojrsdnttbe2BAwdmzpx5/PhxnkIWLm8/wVgnPj5+06ZNWVlZ1f+rtbVVe54MX1/fVatWxcXFHThwQDsxpqmp6fbt26GhoWvXri0qKhL+bGAUKSkp8+fPnzRp0tKlS3fu3Ll37964uLiQkJBJkybNmTNHe/TV6XR2d3dnZ2efOHHi4cOH2mNl1dXVERERridvrKmpiYiIOHXqlMPhuHfvXnh4+JgxYyIiImJiYr799tuqqiqHw9HU1HT+/PmwsLBt27YVFxd775OGN+Xk5Kxbt87X13fkyJFjxoyZM2dOVFRURkbGuXPndu7c+erVq+bmZleUpqenT/pfEydO9PX1HT16tO7t4eHhil8eYSZdXV21tbXVf0e7DuLu3btLlixJTU1dvHhxWlpaUVFRYmLiiBEjtIsbJ02apD1TgJay2gvwZGVlLV++/Pz589oL82h/KScYo6OjIy0tbfTo0YGBgZcuXQoNDd2yZcukSZMCAgLee++9//znP76+vpMmTVq4cGFOTk5CQsKbX8dGjRrl5+ene/vixYu9/ZkZHSkrSHsJk9ra2mnTpo0dOzYyMtJqtfb29j59+nThwoWlpaW9vb2ulC0vL//oo49evXoVEhIybty45cuXl5aWNjU1PXnyZO7cufPnz6+qqtI+7EAvjwZza2pq0n0nvnnz5uzZsy9evKh7e2NjY1NTk+57eVRUVEBAQEBAgO6rZFJSknayQEJCwowZMwICAjIyMlpaWmw225YtW6ZOnZqenq49GNvS0qK9NLy3/yUgqLW1taam5i0//7lef/jhw4eLFy8eN27cpEmTVq5cmZWV9fLly8jIyPPnz2sfqrq6esOGDadOndJeLCotLe3gwYP+/v4LFiy4du1ac3Oz9v6zZs26fPmydhPtGPPaJw8vuXLlyr59++Lj4z/99NNjx46tX79+y5Yt33777ZYtW06dOnXx4sWNGzempaVVV1c3NTW9+SWIE4zR16NHjyZOnPj+++9PGkBgYODYsWNXrFjh7JOy2k1CQ0NjY2OXLl2akpKycuXKjo6O4uLiyMjI/fv3V1VVnTx5ctu2bdeuXQsJCTl58uTXX3/9ww8/2Gy26urqixcvzp49++bNm9XV1fX19fyQNtT09vYWFhZOnz49KipqxIgRs2bN0p7n3+Fw5OfnT58+3c/Pb+fOnW95BjtOMHYbKesJ06ZNS01NnTVr1p49e7QHY7dv3379+vXOzs43r5UNCQn59ttvg4KCNm/eHBcXN3PmzAcPHmhnFPf09NTV1QUHBxcVFfHMT0NNbGzs9OnTA/vQzmgaP3584P+Kjo7evXv3/Pnz+77R19d3/fr1uhOMOzo6XE/mdPz48R07dqxYsWLhwoWJiYlhYWEJCQmu5y5ubm7esWPHyZMneZkBczt27FhQUFDgAMaPHz9z5kztmRWTkpIWLlx49erV1tbWhoaGrq6ujIyMqKgo15l7RUVFq1evPn36tOuDHzx4cMuWLZ999tmnn34aFxcXGhp6+PBh7Yxi7RHa2NjYkydP8lPgENTQ0BAfH79jxw6Hw5GcnLx58+aDBw/Onj07MDDw/fffHz16tPaFbvv27XV1dbrbkrLo69GjR2FhYXfu3NEukKn5X42Nja2trWfOnNGlrO5a2eLi4piYmKSkpMLCwv3794eGhl64cOHEiRPaATly5Eh/f/9Fixbt3bv3448/1t6oXe8TGBi4atUq19VhGCJaW1svXrx48+bNHTt2aOeypaSkOByOkpIS7Xy3WbNm7d69+/r16wN9gyNl3UbKesK0adPu3Lnz+PHj8PDwmpqavn/Ub8qmpqY+ePBgxYoVrkdinU5nW1tbdnb2nDlz4uPjb9++rf2+B0PZu55g/Oa1smlpadu2bSsoKHD+lbKlpaWRkZFpaWmuB8e0qxw3b9786aefpqSkvOX10GAC2tMR1wwgLS1tzZo1Wspq8am9HOjatWvv37+fkJAQHR1dUlKifaiioqJNmza5TsBzOp0HDx7cuXPnvXv3duzY0fdasq6ursLCwk2bNq1du1Z7DVvPftLwPlfK2my2+Pj42NjYhoYG7ajTHpVNT0/XnmXnze99pCz6cqXss2fP5s6dO3bsWO03cRMnTvTz81uxYkW/Kbt48eL09PTi4uLExMTw8PCmpqbjx49rdXrgwIH29vaysrLa2tqamprr16+HhobeunWrpqbG9QAsJxjD6XQ2NDTs2LFj9erV165di46OLioqio6OTktL0572qbKycvbs2dnZ2f3WLCnrNlLWE7SU7fe5mtatW9dvyvZ9+rvu7u66ujrtstvz588TsdC8U8ru2bMnOjpal7KHDx/euXOn9rzErpTt+w6NjY137twJCQn56quvysvL/8U7D2N68ODB8uXLB3pUdty4cdqjsna7vaSkZPPmzYGBgd99911tbe2lS5dWrFjhOlXY6XTm5+drBeJ6i5ayfV9dzG63NzU1XbhwITQ0dNeuXUTskOVK2dzc3O3bt2/ZsmX9+vWucwFGjRo1bty4wMDAkJAQ19XafW+7Z88eUhaavim7cuXKkydPar8TKS0tPXz4cN+U7e7uvnz58oIFC06fPj1z5kztAIuNjQ0LC7t3797y5ctDQ0PDwsJycnK6urqeP38+d+5c16Oy77//ft8HYElZOP9K2YiIiJ6entzc3AULFpw7d871DMYdHR3nz58PCgp6+vTpmzVrs9k2btxIyrqBlPWEN1O2oaFB+/XeokWLkpKS+l4e1jdltYi9evXqrFmzPvzwQ37OQ1/vlLKnTp2KiYnJzs7u+yDbp59++t1332kPtOpStrGxsaamZtWqVRMmTEhNTeUKxqHA9UDrQNLT07VHZS0WS1xc3NWrV51OZ3d396VLl5YuXfrtt982NTW1tbVpX9xOnz69evXq27dvuz5+35TVIjYzM/Pzzz8PCgrq28AYgrSUjY2NPXfu3Lp16168eOH6owcPHmgvM6u7iXYI1dTUPH/+fMuWLbt27fLsXYZBuVI2Nzc3LCxMd4nEJ598Ulpa+t13361ZsyYvL2/ZsmWBgYHh4eH5+fnOv17FZ/To0YsWLbpy5UpjY2NSUtKiRYsuXLjgetJN7Wmfnj9/3tPT4/qCeenSpdmzZ2sP1dbV1fEMnUOTK2WrqqrCwsLOnTvn/N8X42ltbU1KSlqwYIHrsQHtysGampq8vLywsLAffvjBm5/A4ETKesJHH3306NEj7YpEzZo1ayZPnjxx4sQPP/zQdTmixpWy9fX1GRkZc+fOnThxoutyWcBFe+bhgV595/+1d/8sCsNwGMffnV3FgtBJFFw6RgUXBxXXTonBxT+Tg5u+A4ei2EEnlyIKOhQCvoUbAqXnHQcH591Vvp8taQIplLZP4dc8OBwOvu8779Xr9f1+bwekUdYYc7vdGo1GoVDIlsvi5V2v116v53ypUqnYrXdSURQJIRaLhW2Ox+NisWgHp6WwVhpljTFhGLZaLcdxtNZswIMkSbTWnU5HKTWZTLKHwjAMgmC9Xj9MOR6P3W7XXmm+7/OzYlibzabZbKZF+1nb7bZcLttXr08zQxzHQRBorbOdu92uVqsNh0PbTKPs6XTq9/sfb5KlUkkp9YQzw3+XJImUcjAYZDuNMbPZTAjx6ZTL5eJ5Xvp4/ZVlvhqi7L8jhFitVvf7vVqtep6XLZcFnmc+n0sp4zgejUau62bLZYEfMZ1OlVLn81lK6brucrn86xUBwPdEUdRut9OvwAD+FlEWAAAAAJAzRFkAAAAAQM4QZQEAAAAAOUOUBQAAAADkDFEWAAAAAJAzRFkAAAAAQM4QZQEAAAAAOfMGH2wZvLYGYPMAAAAASUVORK5CYII=" alt="" />
ECharts是数据驱动的图表,大部分时候你关心的是那个option该如何实现,官网的文档提供详细的说明。
ECharts学习总结(一):ECharts的第一个图表的更多相关文章
- ECharts学习总结(五):echarts的Option概览
注:下面内容摘自echarts官网,原文地址:http://echarts.baidu.com/doc/doc.html#%E9%80%89%E9%A1%B9 option 图表选项,包含图表实例任何 ...
- ECharts学习总结(四):echarts的实例方法
echarts的实例方法非常重要,因为在实际运用中我们额图表的数据不可能是死的,而是动态变化的,实例方法为动态改变数据提供了方法.故特意从官网上面把下面实例方法进行记录: 注:下面内容摘自echart ...
- ECharts学习总结(三):ECharts图表对象的初始化(init)详解以及注意事项
一.相关js文件的引入 这里我们采用标签式引入文件的方式,我们引入两个js文件,一个是esl.js文件和一个echarts.js. <script src="js/esl.js&quo ...
- Echarts 学习系列(3)-Echarts动态数据交互
写在前面 上一小节,我们总结了折线(面积)图.柱状(条形)图.饼(圆环)图类型的图表. 但是,都是静态的.接下来的,这一小节,总结的是Echarts 动态数据的交换. 前置条件 开发环境:win10 ...
- echarts学习笔记(一)
echarts学习笔记(一) echarts开发步骤 创建一个新的html文件 在html文件head头部信息中导入echarts 声明一个容器(可以理解为画布),用于存放echarts 实例化ech ...
- echarts学习思路及常用属性记录
此篇博文分享自己对于入门学习echart的思路及对常见组件的用法记录,如serise.data和坐标轴对应关系,多个坐标轴,多个grid的对齐,tooltip的超出处理,坐标轴/toolti ...
- echarts学习总结
ECharts学习总结使用步骤1 引入ECharts <script src="echarts.min.js"></script>2 绘制一个简单的图表 为 ...
- ECharts学习(3)--toolbox(工具栏)
1. toolbox:这是ECharts中的工具栏.内置有导出图片.数据视图.动态类型切换.数据区域缩放.重置五个工具. 2. toolbox中的属性,不包含五个工具.里面最主要的就是feature这 ...
- Echarts学习记录——如何去掉网格线及网格区域颜色
关键属性 splitLine和splitArea,可以设置相关的属性 示例代码 <!DOCTYPE html> <html lang="en"> <h ...
随机推荐
- mogodb(1) 简介
1 引言 NoSQL,全称是“Not Only Sql”,指的是非关系型的数据库.这类数据库主要有这些特点:非关系型的.分布式.开源的.水平可扩展的.原始目的是为了大规模web应用,这场全新的数据库革 ...
- 关于swiper在vue中不生效的问题
在初始化swiper中加入这两个属性: observer:true observeParents:true var swiper = new Swiper('.swiper-container', { ...
- CodeForces 811B Vladik and Complicated Book
离线,树状数组. 数据范围好像有点小,直接暴力可以过的. 我直接上了$n,Q≤100000$的做法:只需要判断区间上比$x$小的数字有几个即可,可以对询问进行离线操作,从左到右一个一个数字插入到树状数 ...
- CodeForces 785A Anton and Polyhedrons
简单判断. 分别判断每个单词是几面体,加起来就是答案. #include <cstdio> #include <cmath> #include <cstring> ...
- 洛谷P2507 [SCOI2008]配对 [DP,贪心]
题目传送门 配对 题目描述 你有 n 个整数Ai和n 个整数Bi.你需要把它们配对,即每个Ai恰好对应一个Bp[i].要求所有配对的整数差的绝对值之和尽量小,但不允许两个相同的数配对.例如A={5,6 ...
- Python画一朵花
from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import Line ...
- hibernate for循环执行添加操作出错问题
操作数据库使用hibernate框架 hibernate插入对象的时候,对于id唯一,数据库设置为自增的时候执行完操作后会将id赋予该对象 再次插入就会出现问题. 由于session缓存,得再研究下.
- 【Leetcode】583. Delete Operation for Two Strings
583. Delete Operation for Two Strings Given two words word1 and word2, find the minimum number of st ...
- 2017/11/3 Leetcode 日记
2017/11/3 Leetcode 日记 654. Maximum Binary Tree Given an integer array with no duplicates. A maximum ...
- MySQL笔记(三)之数据插入更新与删除
INSERT INTO INSERT INTO 语句用于向表格中插入新的行. 语法: INSERT INTO 表 VALUES (值1, 值2,....) # 列数必须和值的个数匹配 INSERT I ...