[BZOJ2688]折线统计
Description
二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升、下降的折线,设其数量为f(S)。如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升、下降。

现给定k,求满足f(S) = k的S集合个数。
Input
第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标。所有点的坐标值都在[1, 100000]内,且不存在两个点,x坐标值相等或y坐标值相等
Output
输出满足要求的方案总数 mod 100007的结果
Sample Input
5 5
3 2
4 4
2 3
1 1
Sample Output
HINT
对于100%的数据,n <= 50000,0 < k <= 10
基础的$n^2k$的dp很好想,然后你会发现每一个点的转移都是以所以y坐标小于或大于它的所有数为基础
这里可以用树状数组/线段树来优化转移、
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#define M 100010
#define mod 100007
using namespace std;
struct point{int x,y;}a[M];
bool cmp1(point a1,point a2) {return a1.x<a2.x;}
bool cmp2(point a1,point a2) {return a1.y<a2.y;}
int ans,n,m;
int f[M][][];
struct change_query
{
int val[M];
void insert(int loc,int v)
{
for(int i=loc;i<=n;i+=i&(-i))
(val[i]+=v)%=mod;
}
int query(int loc)
{
int ans=;
for(int i=loc;i>;i-=i&(-i)) (ans+=val[i])%=mod;
return ans;
}
int get(int l,int r) {return (query(r)-query(l-)+mod)%mod;}
}T[][];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y);
sort(a+,a++n,cmp2);
for(int i=;i<=n;i++) a[i].y=i;
sort(a+,a++n,cmp1);
for(int i=;i<=n;i++)
{
f[i][][]=f[i][][]=;
T[][].insert(a[i].y,f[i][][]);
T[][].insert(a[i].y,f[i][][]);
for(int k=;k<=m;k++)
{
int y=a[i].y;
if(y!=)
{
(f[i][k][]+=T[k][].get(,y-)+T[k-][].get(,y-))%=mod;//f[i][k][1]+=f[j][k][1]+f[j][k-1][0];
T[k][].insert(y,f[i][k][]);
}
if(y!=n)
{
(f[i][k][]+=T[k][].get(y+,n)+T[k-][].get(y+,n))%=mod;//f[i][k][0]+=f[j][k][0]+f[j][k-1][1];
T[k][].insert(y,f[i][k][]);
}
}
}
for(int i=;i<=n;i++) (ans+=f[i][m][]+f[i][m][])%=mod;
printf("%d",ans);
return ;
}
[BZOJ2688]折线统计的更多相关文章
- BZOJ3688: 折线统计
题解: 令f[i][j][0/1]表示前i个数有j段,最后一段是下降/上升的方案数 很容易列出状态转移方程(已按x轴排序) f[i][j][0]=sigma(f[k][j][0]+f[k][j-1][ ...
- 折线统计(line)
折线统计(line) 题目描述 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中, ...
- 【ybt金牌导航1-2-3】折线统计
折线统计 题目链接:ybt金牌导航1-2-3 题目大意 在一个图上有一些点,保证任意两个点的横纵坐标都不相同. 要你选一些集合,按 x 坐标排序依次连接,会构成一些连续上升下降的折线,问你折线数量是 ...
- [FJSC2014]折线统计
[题目描述] 二维平面上有n 个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x 坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2 ...
- BZOJ3688 折线统计【树状数组优化DP】
Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1-&g ...
- 题解 bzoj3688【折线统计】
考虑 \(dp\) . 首先把所有节点按 \(x\) 从小到大排序是很有必要的. 记 f[i][j][0] 表示满足以第 \(i\) 个节点做折线结尾,选取的点集 \(S\) 满足 \(f(S)=j\ ...
- echarts 折线统计笔记
效果案例图 需要引入的js文件可以直接去官网下载 下面是代码 <!--第一步: 引入 ECharts 文件 --> <script src="static/js/myjs/ ...
- 2018.09.28 bzoj3688: 折线统计(dp+树状数组)
传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点 ...
- BZOJ3688 折线统计 【dp + BIT】
题目链接 BZOJ3688 题解 将点排序 设\(f[i][j][0|1]\)表示以第\(i\)点结尾,有\(j\)段,最后一段上升或者下降的方案数 以上升为例 \[f[i][j][0] = \sum ...
随机推荐
- [VS2015].NET4.0环境下使用.NET2.0程序集,使用sqlite时报异常 出现“混合模式程序集异常”
在.net 4.0环境下使用sqlite时报异常 混合模式程序集是针对“v2.0.50727”版的运行时生成的,在没有配置其他信息的情况下,无法在 4.0 运行时中加载该程序集其调用的方法是从sqli ...
- 通过实现一个TableView来理解iOS UI编程
推荐一篇神作: 通过实现一个TableView来理解iOS UI编程 http://blog.jobbole.com/61101/
- Java/android 里ClassName.this和this的使用
如果在内部类里面用this就是指这个内部类的实例,而如果用OuterClassName.this就是它外面的那个类的实例 ClassName.this这个用法多用于在nested class(内部类) ...
- llvm,gcc
GCC,LLVM,Clang编译器对比 在XCode中,我们经常会看到这些编译选项(如下图),有些人可能会有些茫然,本文将对GCC4.2.LLVM GCC 4.2.LLVM compliler 2 ...
- Python 之 UUID
UUID是根据MAC以及当前时间等创建的不重复的随机字符串 import uuid # Generate a UUID from a host ID, sequence number, and the ...
- Linux(5)- MariaDB、mysql主从复制、初识redis
一.MYSQL(mariadb) MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用GPL授权许可. 开发这个分支的原因之一是:甲骨文公司收购了MySQL后,有将MySQL ...
- (0.2.3)Mysql安装——二进制安装
Linux平台下二进制方式安装卸载mysql 本章节:二进制安装mysql 目录: 1.基于Linux平台的Mysql项目场景介绍 2.mysql数据库运行环境准备-最优配置 3.如何下载mysql数 ...
- 如何查看windows某个目录下所有文件/文件夹的大小?
如何查看windows某个目录下所有文件/文件夹的大小? TreeSize Free绿色汉化版是一款硬盘空间管理工具,用树形描述出来,能够显示文件大小和实际占用空间数及浪费的空间等信息,让你做出相应的 ...
- Apache Lucene初探
讲解之前,先来分享一些资料 首先,学习任何一门新的亦或是旧的开源技术,百度其中一二是最简单的办法,先了解其中的大概,思想等等.这里就贡献一个讲解很到位的ppt 这是Lucene4.0的官网文档:htt ...
- AngularJS filter:search 是如何匹配的 ng-repeat filter:search ,filter:{$:search},只取repeat的item的value 不含label
1. filter可以接收参数,参数用 : 进行分割,如下: {{ expression | filter:argument1:argument2:... }} 2. filter参数是 对象 ...