[BZOJ2688]折线统计
Description
二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升、下降的折线,设其数量为f(S)。如下图中,1->2,2->3,3->5,5->6(数字为下图中从左到右的点编号),将折线分为了4部分,每部分连续上升、下降。

现给定k,求满足f(S) = k的S集合个数。
Input
第一行两个整数n和k,以下n行每行两个数(xi, yi)表示第i个点的坐标。所有点的坐标值都在[1, 100000]内,且不存在两个点,x坐标值相等或y坐标值相等
Output
输出满足要求的方案总数 mod 100007的结果
Sample Input
5 5
3 2
4 4
2 3
1 1
Sample Output
HINT
对于100%的数据,n <= 50000,0 < k <= 10
基础的$n^2k$的dp很好想,然后你会发现每一个点的转移都是以所以y坐标小于或大于它的所有数为基础
这里可以用树状数组/线段树来优化转移、
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#define M 100010
#define mod 100007
using namespace std;
struct point{int x,y;}a[M];
bool cmp1(point a1,point a2) {return a1.x<a2.x;}
bool cmp2(point a1,point a2) {return a1.y<a2.y;}
int ans,n,m;
int f[M][][];
struct change_query
{
int val[M];
void insert(int loc,int v)
{
for(int i=loc;i<=n;i+=i&(-i))
(val[i]+=v)%=mod;
}
int query(int loc)
{
int ans=;
for(int i=loc;i>;i-=i&(-i)) (ans+=val[i])%=mod;
return ans;
}
int get(int l,int r) {return (query(r)-query(l-)+mod)%mod;}
}T[][];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y);
sort(a+,a++n,cmp2);
for(int i=;i<=n;i++) a[i].y=i;
sort(a+,a++n,cmp1);
for(int i=;i<=n;i++)
{
f[i][][]=f[i][][]=;
T[][].insert(a[i].y,f[i][][]);
T[][].insert(a[i].y,f[i][][]);
for(int k=;k<=m;k++)
{
int y=a[i].y;
if(y!=)
{
(f[i][k][]+=T[k][].get(,y-)+T[k-][].get(,y-))%=mod;//f[i][k][1]+=f[j][k][1]+f[j][k-1][0];
T[k][].insert(y,f[i][k][]);
}
if(y!=n)
{
(f[i][k][]+=T[k][].get(y+,n)+T[k-][].get(y+,n))%=mod;//f[i][k][0]+=f[j][k][0]+f[j][k-1][1];
T[k][].insert(y,f[i][k][]);
}
}
}
for(int i=;i<=n;i++) (ans+=f[i][m][]+f[i][m][])%=mod;
printf("%d",ans);
return ;
}
[BZOJ2688]折线统计的更多相关文章
- BZOJ3688: 折线统计
题解: 令f[i][j][0/1]表示前i个数有j段,最后一段是下降/上升的方案数 很容易列出状态转移方程(已按x轴排序) f[i][j][0]=sigma(f[k][j][0]+f[k][j-1][ ...
- 折线统计(line)
折线统计(line) 题目描述 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中, ...
- 【ybt金牌导航1-2-3】折线统计
折线统计 题目链接:ybt金牌导航1-2-3 题目大意 在一个图上有一些点,保证任意两个点的横纵坐标都不相同. 要你选一些集合,按 x 坐标排序依次连接,会构成一些连续上升下降的折线,问你折线数量是 ...
- [FJSC2014]折线统计
[题目描述] 二维平面上有n 个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x 坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1->2 ...
- BZOJ3688 折线统计【树状数组优化DP】
Description 二维平面上有n个点(xi, yi),现在这些点中取若干点构成一个集合S,对它们按照x坐标排序,顺次连接,将会构成一些连续上升.下降的折线,设其数量为f(S).如下图中,1-&g ...
- 题解 bzoj3688【折线统计】
考虑 \(dp\) . 首先把所有节点按 \(x\) 从小到大排序是很有必要的. 记 f[i][j][0] 表示满足以第 \(i\) 个节点做折线结尾,选取的点集 \(S\) 满足 \(f(S)=j\ ...
- echarts 折线统计笔记
效果案例图 需要引入的js文件可以直接去官网下载 下面是代码 <!--第一步: 引入 ECharts 文件 --> <script src="static/js/myjs/ ...
- 2018.09.28 bzoj3688: 折线统计(dp+树状数组)
传送门 简单树状数组优化dp. 注意到k很小提示我们搜(d)(d)(d)索(p)(p)(p). 先按第一维排序. 用f[i][j][0/1]f[i][j][0/1]f[i][j][0/1]表示第i个点 ...
- BZOJ3688 折线统计 【dp + BIT】
题目链接 BZOJ3688 题解 将点排序 设\(f[i][j][0|1]\)表示以第\(i\)点结尾,有\(j\)段,最后一段上升或者下降的方案数 以上升为例 \[f[i][j][0] = \sum ...
随机推荐
- 《Apologize》歌曲
OneRepublic,中译名“共和时代”,是美国的一个流行摇滚乐队,曲风走流行.独立摇滚的路线.2006年天使专辑<Dreaming Out Loud>诞生,主打<Apologiz ...
- 一直深深困扰我的问题——hadoop 重启集群后,之前运行的job运行状态都丢失了
努力之后总是存在回报的,我花了三天时间终于找到了问题所在: 配置文件yarn-site.xml: <property> <name>yarn.resourcema ...
- HDU_5510_Bazinga
Bazinga Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- poj3233—Matrix Power Series
题目链接:http://poj.org/problem?id=3233 题目意思:给一个矩阵n*n的矩阵A和一个k,求一个式子 S = A + A2 + A3 + … + Ak. 这个需要用到等比数列 ...
- cloud native
什么是原生云(cloud native)应用? 原生云cloud-native应用的定义是:首先,应用系统应该与底层物理基础设施解耦.说白了,应用程序应该与操作系统等基础设施分离,不应该依赖Linux ...
- LeetCode_Compare Version Numbers
题目: Compare two version numbers version1 and version2. If version1 > version2 return 1, if versio ...
- UVA10954:Add All(优先队列)
题目:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=68990#problem/O 题目需求:在数组中拿出两个数相加,再把结果放回数组中再 ...
- SDUT3165:Round Robina(循环链表)
题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=3165 题意分析: 比赛时这题没有A真伤心 ...
- UVA+POJ中大数实现的题目,持续更新(JAVA实现)
UVA10494:If We Were a Child Again 大数除法加取余 import java.util.Arrays; import java.util.Scanner; import ...
- 《Oracle RAC性能优化》
一 RAC环境 RAC架构,2节点信息 节点1 SQL> show parameter instance NAME TYPE ...