pasty公式
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
http://patsy.readthedocs.io/en/latest/overview.html
pasty功能:线性分析里因素分析(方差分析)
and Patsy takes care of building appropriate matrices. Furthermore, it:
- Allows data transformations to be specified using arbitrary Python code: instead of
x
, we could have writtenlog(x)
,(x > 0)
, or evenlog(x) if x > 1e-5 else log(1e-5)
, - Provides a range of convenient options for coding categorical variables, including automatic detection and removal of redundancies,
- Knows how to apply ‘the same’ transformation used on original data to new data, even for tricky transformations like centering or standardization (critical if you want to use your model to make predictions),
- Has an incremental mode to handle data sets which are too large to fit into memory at one time,
- Provides a language for symbolic, human-readable specification of linear constraint matrices,
- Has a thorough test suite (>97% statement coverage) and solid underlying theory, allowing it to correctly handle corner cases that even R gets wrong, and
- Features a simple API for integration into statistical packages.
pasty不能做的模型分析,只是提供描述性统计的高级接口
What Patsy won’t do is, well, statistics — it just lets you describe models in general terms. It doesn’t know or care whether you ultimately want to do linear regression, time-series analysis, or fit a forest of decision trees, and it certainly won’t do any of those things for you — it just gives a high-level language for describing which factors you want your underlying model to take into account. It’s not suitable for implementing arbitrary non-linear models from scratch; for that, you’ll be better off with something like Theano, SymPy, or just plain Python. But if you’re using a statistical package that requires you to provide a raw model matrix, then you can use Patsy to painlessly construct that model matrix; and if you’re the author of a statistics package, then I hope you’ll consider integrating Patsy as part of your front-end.
Patsy’s goal is to become the standard high-level interface to describing statistical models in Python, regardless of what particular model or library is being used underneath.
pasty函数可以自定义
I()让+表示算术模式加号
Arithmetic transformations are also possible, but you’ll need to “protect” them by wrapping them in I()
, so that Patsy knows that you really do want +
to mean addition:
In [23]: dmatrix("I(x1 + x2)", data) # compare to "x1 + x2"
Out[23]:
DesignMatrix with shape (8, 2)
Intercept I(x1 + x2)
1 1.66083
1 0.81076
1 1.12278
1 3.69517
1 2.62860
1 -0.85560
1 1.39395
1 0.18232
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1)
In [24]: dmatrix("I(x1 + x2)", {"x1": np.array([1, 2, 3]), "x2": np.array([4, 5, 6])})
Out[24]:
DesignMatrix with shape (3, 2)
Intercept I(x1 + x2)
1 5
1 7
1 9
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1) In [25]: dmatrix("I(x1 + x2)", {"x1": [1, 2, 3], "x2": [4, 5, 6]})
Out[25]:
DesignMatrix with shape (6, 2)
Intercept I(x1 + x2)
1 1
1 2
1 3
1 4
1 5
1 6
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1)
# ---------------------------------------------------------------
def anova_statsmodels():
''' do the ANOVA with a function '''
# Get the data
data = pd.read_csv('galton.csv')
#sex是性别,属于分类变量
anova_results = anova_lm(ols('height~C(sex)', data).fit())
print('\nANOVA with "statsmodels" ------------------------------')
print(anova_results)
return anova_results['F'][0]
https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)
pasty公式的更多相关文章
- 为WLW开发Latex公式插件
WLW是写博客的利器,支持离线.格式排版等,而且拥有众多的插件.博客园推荐了代码插入插件,但是没有提供WLW的公式编译插件.目前我的一般做法是:先在Word下使用MathType编辑好公式,然后将公式 ...
- 百度编辑器UEditor与UEditor 公式插件完整Demo
1.下载UEditor(我的是.net项目) 2.下载UEditor公式插件 3.新建解决方案和项目 4.在浏览器中预览index.html页面 结果: 5.index.html源码 <!DOC ...
- poi读取excel模板,填充内容并导出,支持导出2007支持公式自动计算
/** * 版权所有(C) 2016 * @author www.xiongge.club * @date 2016-12-7 上午10:03:29 */ package xlsx; /** * @C ...
- Oracle Sales Cloud:管理沙盒(定制化)小细节1——利用公式创建字段并显示在前端页面
Oracle Sales Cloud(Oracle 销售云)是一套基于Oracle云端的CRM管理系统.由于 Oracle 销售云是基于 Oracle 云环境的,它与传统的管理系统相比,显著特点之一便 ...
- Excel公式 提取文件路径后缀
我们在代码中获取一个文件路径的后缀,是一个很简单的事. 如C#中,可以通过new FileInfo(filePath).Extension,或者Path.GetExtension(filePath)获 ...
- Tween公式 以及四个参数
Tween的主页在这里:http://createjs.com/tweenjs , 这里边还有挺多开源项目的: Tween公式 4个参数 t:current time(当前时间) b:beginnin ...
- 期权定价公式:BS公式推导——从高数和概率论角度
嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.
- latex公式编号
1 \begin{flalign*} 2 % In this way (this arrange of &), the equation will in the center and alig ...
- 《社交网络》里的评分公式——ELO排名系统
<社交网络>里的Mark Zackburg被女朋友甩后,在舍友的启发下,充分发挥了技术宅男自娱自乐的恶搞天分,做出了Facemash网站,对学校女生的相貌进行排名打分,结果网站访问流量过大 ...
随机推荐
- C# 钱数 小写 转 大写
public class Rmb { /// <summary> /// 转换人民币大小金额 /// </summary> /// <param name="n ...
- C++:const_cast的简单理解
前言:const_cast是我比较头疼的一个知识点,最近查阅了很多资料,也翻看了很多他人的博客,故在此将自己目前学习到的有关const_cast知识做一个简单的总结 一.什么是const_cast 简 ...
- 周总结<6>
周次 学习时间 新编写代码行数 博客量(篇) 学到知识点 13 10 100 2 网页设计:邻接矩阵深度以及广度遍历
- CentOS 7 网卡命名修改为eth0格式
Linux 操作系统的网卡设备的传统命名方式是 eth0.eth1.eth2等,而 CentOS7 提供了不同的命名规则,默认是基于固件.拓扑.位置信息来分配.这样做的优点是命名全自动的.可预知的,缺 ...
- 安装DHCP 服务器 指的是由服务器控制一段IP地址范围,客户机登录服务器时就可以自动获得服务器分配的IP地址和子网掩码
DHCP服务详解 前言:动态主机配置协议,给局域网内的主机分配IP地址,子网掩码,网关,DNS ARP协议 arp: address resolveing protocol (地址解析协议) 实现:I ...
- jdbc 1.0
1. jdbc : java数据库连接技术 2.主要用到的类及接口 Class Driver ManagerDriver Connection Statement PreparedStatement ...
- laraven安装记录
版本4.2.11 下载地址:https://codeload.github.com/laravel/laravel/zip/v4.2.11 步骤: 1.解压到目录 2.下载composer,并放到/u ...
- Java List部分截取,获得指定长度子集合
subList方法用于获取列表中指定范围的子列表,该列表支持原列表所支持的所有可选操作.返回列表中指定范围的子列表. 语法 subList(int fromIndex, int toIndex) fr ...
- jquery实现可编辑的下拉框( input + select )
HTML: <input id="inputModel" /> <select name="EngineModel" size="1 ...
- 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块
题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...