pasty公式
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

http://patsy.readthedocs.io/en/latest/overview.html

pasty功能:线性分析里因素分析(方差分析)
and Patsy takes care of building appropriate matrices. Furthermore, it:
- Allows data transformations to be specified using arbitrary Python code: instead of
x, we could have writtenlog(x),(x > 0), or evenlog(x) if x > 1e-5 else log(1e-5), - Provides a range of convenient options for coding categorical variables, including automatic detection and removal of redundancies,
- Knows how to apply ‘the same’ transformation used on original data to new data, even for tricky transformations like centering or standardization (critical if you want to use your model to make predictions),
- Has an incremental mode to handle data sets which are too large to fit into memory at one time,
- Provides a language for symbolic, human-readable specification of linear constraint matrices,
- Has a thorough test suite (>97% statement coverage) and solid underlying theory, allowing it to correctly handle corner cases that even R gets wrong, and
- Features a simple API for integration into statistical packages.
pasty不能做的模型分析,只是提供描述性统计的高级接口
What Patsy won’t do is, well, statistics — it just lets you describe models in general terms. It doesn’t know or care whether you ultimately want to do linear regression, time-series analysis, or fit a forest of decision trees, and it certainly won’t do any of those things for you — it just gives a high-level language for describing which factors you want your underlying model to take into account. It’s not suitable for implementing arbitrary non-linear models from scratch; for that, you’ll be better off with something like Theano, SymPy, or just plain Python. But if you’re using a statistical package that requires you to provide a raw model matrix, then you can use Patsy to painlessly construct that model matrix; and if you’re the author of a statistics package, then I hope you’ll consider integrating Patsy as part of your front-end.
Patsy’s goal is to become the standard high-level interface to describing statistical models in Python, regardless of what particular model or library is being used underneath.


pasty函数可以自定义

I()让+表示算术模式加号
Arithmetic transformations are also possible, but you’ll need to “protect” them by wrapping them in I(), so that Patsy knows that you really do want + to mean addition:
In [23]: dmatrix("I(x1 + x2)", data) # compare to "x1 + x2"
Out[23]:
DesignMatrix with shape (8, 2)
Intercept I(x1 + x2)
1 1.66083
1 0.81076
1 1.12278
1 3.69517
1 2.62860
1 -0.85560
1 1.39395
1 0.18232
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1)
In [24]: dmatrix("I(x1 + x2)", {"x1": np.array([1, 2, 3]), "x2": np.array([4, 5, 6])})
Out[24]:
DesignMatrix with shape (3, 2)
Intercept I(x1 + x2)
1 5
1 7
1 9
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1)
In [25]: dmatrix("I(x1 + x2)", {"x1": [1, 2, 3], "x2": [4, 5, 6]})
Out[25]:
DesignMatrix with shape (6, 2)
Intercept I(x1 + x2)
1 1
1 2
1 3
1 4
1 5
1 6
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1)
# ---------------------------------------------------------------
def anova_statsmodels():
''' do the ANOVA with a function '''
# Get the data
data = pd.read_csv('galton.csv')
#sex是性别,属于分类变量
anova_results = anova_lm(ols('height~C(sex)', data).fit())
print('\nANOVA with "statsmodels" ------------------------------')
print(anova_results)
return anova_results['F'][0]
https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

pasty公式的更多相关文章
- 为WLW开发Latex公式插件
WLW是写博客的利器,支持离线.格式排版等,而且拥有众多的插件.博客园推荐了代码插入插件,但是没有提供WLW的公式编译插件.目前我的一般做法是:先在Word下使用MathType编辑好公式,然后将公式 ...
- 百度编辑器UEditor与UEditor 公式插件完整Demo
1.下载UEditor(我的是.net项目) 2.下载UEditor公式插件 3.新建解决方案和项目 4.在浏览器中预览index.html页面 结果: 5.index.html源码 <!DOC ...
- poi读取excel模板,填充内容并导出,支持导出2007支持公式自动计算
/** * 版权所有(C) 2016 * @author www.xiongge.club * @date 2016-12-7 上午10:03:29 */ package xlsx; /** * @C ...
- Oracle Sales Cloud:管理沙盒(定制化)小细节1——利用公式创建字段并显示在前端页面
Oracle Sales Cloud(Oracle 销售云)是一套基于Oracle云端的CRM管理系统.由于 Oracle 销售云是基于 Oracle 云环境的,它与传统的管理系统相比,显著特点之一便 ...
- Excel公式 提取文件路径后缀
我们在代码中获取一个文件路径的后缀,是一个很简单的事. 如C#中,可以通过new FileInfo(filePath).Extension,或者Path.GetExtension(filePath)获 ...
- Tween公式 以及四个参数
Tween的主页在这里:http://createjs.com/tweenjs , 这里边还有挺多开源项目的: Tween公式 4个参数 t:current time(当前时间) b:beginnin ...
- 期权定价公式:BS公式推导——从高数和概率论角度
嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.
- latex公式编号
1 \begin{flalign*} 2 % In this way (this arrange of &), the equation will in the center and alig ...
- 《社交网络》里的评分公式——ELO排名系统
<社交网络>里的Mark Zackburg被女朋友甩后,在舍友的启发下,充分发挥了技术宅男自娱自乐的恶搞天分,做出了Facemash网站,对学校女生的相貌进行排名打分,结果网站访问流量过大 ...
随机推荐
- ES6的新特性(17)——Generator 函数的异步应用
Generator 函数的异步应用 异步编程对 JavaScript 语言太重要.Javascript 语言的执行环境是“单线程”的,如果没有异步编程,根本没法用,非卡死不可.本章主要介绍 Gener ...
- Alpha阶段中间产物——GUI Prototype、WBS及PSP
作业地址:https://edu.cnblogs.com/campus/nenu/SWE2017FALL/homework/1224 内容: GUI Prototype 我的书架 我的书架→添加图书 ...
- 六周psp
本周psp 本周进度条 代码累积折线图 博文字数累积折线图 饼状图
- HDU 5464 Clarke and problem 动态规划
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5464 Clarke and problem Accepts: 130 Submissions: ...
- 关于String和StringBuffer的原理
public class Foo {2. public static void main (String [] args) {3. StringBuffer a = new Strin ...
- 判断字符串中是否存在的几种方案:string.indexof、string.contains、list.contains、list.any几种方式效率对比
我们在做项目时,可能会遇到这样的需求,比如判断,1,2,3,33,22,123, 中是否存在,3,. var str=",1,2,3,33,22,123,"; 一般有几种方式: 1 ...
- js登录界面代码自用
var btn = document.getElementById("a4"); var usne = document.getElementById("username ...
- JavaScript数组去重的四种方法
今天,洗澡的想一个有趣的问题,使用js给数组去重,我想了四种方法,虽然今天的任务没有完成,5555: 不多说,po代码: //方法一:简单循环去重 Array.prototype.unique1 ...
- [Oracle收费标准]
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf 1: 数据库 2. 中间件 3. weblogi ...
- windows安装安卓开发环境Eclipse+SDK+ADT
准备条件 操作系统:win7 64位 需要的资源:JDK.Eclipse.SDK.ADT 步骤简介: 第一步:下载安装最新版JDK 第二步:下载安装Eclipse 第三步:下载安装SDK 第四步:安装 ...