http://patsy.readthedocs.io/en/latest/overview.html

pasty功能:线性分析里因素分析(方差分析)

and Patsy takes care of building appropriate matrices. Furthermore, it:

  • Allows data transformations to be specified using arbitrary Python code: instead of x, we could have written log(x), (x > 0), or even log(x) if x > 1e-5 else log(1e-5),
  • Provides a range of convenient options for coding categorical variables, including automatic detection and removal of redundancies,
  • Knows how to apply ‘the same’ transformation used on original data to new data, even for tricky transformations like centering or standardization (critical if you want to use your model to make predictions),
  • Has an incremental mode to handle data sets which are too large to fit into memory at one time,
  • Provides a language for symbolic, human-readable specification of linear constraint matrices,
  • Has a thorough test suite (>97% statement coverage) and solid underlying theory, allowing it to correctly handle corner cases that even R gets wrong, and
  • Features a simple API for integration into statistical packages.

pasty不能做的模型分析,只是提供描述性统计的高级接口

What Patsy won’t do is, well, statistics — it just lets you describe models in general terms. It doesn’t know or care whether you ultimately want to do linear regression, time-series analysis, or fit a forest of decision trees, and it certainly won’t do any of those things for you — it just gives a high-level language for describing which factors you want your underlying model to take into account. It’s not suitable for implementing arbitrary non-linear models from scratch; for that, you’ll be better off with something like Theano, SymPy, or just plain Python. But if you’re using a statistical package that requires you to provide a raw model matrix, then you can use Patsy to painlessly construct that model matrix; and if you’re the author of a statistics package, then I hope you’ll consider integrating Patsy as part of your front-end.

Patsy’s goal is to become the standard high-level interface to describing statistical models in Python, regardless of what particular model or library is being used underneath.

pasty函数可以自定义

I()让+表示算术模式加号

Arithmetic transformations are also possible, but you’ll need to “protect” them by wrapping them in I(), so that Patsy knows that you really do want + to mean addition:

In [23]: dmatrix("I(x1 + x2)", data)  # compare to "x1 + x2"
Out[23]:
DesignMatrix with shape (8, 2)
Intercept I(x1 + x2)
1 1.66083
1 0.81076
1 1.12278
1 3.69517
1 2.62860
1 -0.85560
1 1.39395
1 0.18232
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1)
In [24]: dmatrix("I(x1 + x2)", {"x1": np.array([1, 2, 3]), "x2": np.array([4, 5, 6])})
Out[24]:
DesignMatrix with shape (3, 2)
Intercept I(x1 + x2)
1 5
1 7
1 9
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1) In [25]: dmatrix("I(x1 + x2)", {"x1": [1, 2, 3], "x2": [4, 5, 6]})
Out[25]:
DesignMatrix with shape (6, 2)
Intercept I(x1 + x2)
1 1
1 2
1 3
1 4
1 5
1 6
Terms:
'Intercept' (column 0)
'I(x1 + x2)' (column 1)

# ---------------------------------------------------------------
def anova_statsmodels():
    ''' do the ANOVA with a function '''
    
    # Get the data
    data = pd.read_csv('galton.csv')
    #sex是性别,属于分类变量
    anova_results = anova_lm(ols('height~C(sex)', data).fit())
    print('\nANOVA with "statsmodels" ------------------------------')
    print(anova_results)
    
    return anova_results['F'][0]

https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

 
 

pasty公式的更多相关文章

  1. 为WLW开发Latex公式插件

    WLW是写博客的利器,支持离线.格式排版等,而且拥有众多的插件.博客园推荐了代码插入插件,但是没有提供WLW的公式编译插件.目前我的一般做法是:先在Word下使用MathType编辑好公式,然后将公式 ...

  2. 百度编辑器UEditor与UEditor 公式插件完整Demo

    1.下载UEditor(我的是.net项目) 2.下载UEditor公式插件 3.新建解决方案和项目 4.在浏览器中预览index.html页面 结果: 5.index.html源码 <!DOC ...

  3. poi读取excel模板,填充内容并导出,支持导出2007支持公式自动计算

    /** * 版权所有(C) 2016 * @author www.xiongge.club * @date 2016-12-7 上午10:03:29 */ package xlsx; /** * @C ...

  4. Oracle Sales Cloud:管理沙盒(定制化)小细节1——利用公式创建字段并显示在前端页面

    Oracle Sales Cloud(Oracle 销售云)是一套基于Oracle云端的CRM管理系统.由于 Oracle 销售云是基于 Oracle 云环境的,它与传统的管理系统相比,显著特点之一便 ...

  5. Excel公式 提取文件路径后缀

    我们在代码中获取一个文件路径的后缀,是一个很简单的事. 如C#中,可以通过new FileInfo(filePath).Extension,或者Path.GetExtension(filePath)获 ...

  6. Tween公式 以及四个参数

    Tween的主页在这里:http://createjs.com/tweenjs , 这里边还有挺多开源项目的: Tween公式 4个参数 t:current time(当前时间) b:beginnin ...

  7. 期权定价公式:BS公式推导——从高数和概率论角度

    嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.

  8. latex公式编号

    1 \begin{flalign*} 2 % In this way (this arrange of &), the equation will in the center and alig ...

  9. 《社交网络》里的评分公式——ELO排名系统

    <社交网络>里的Mark Zackburg被女朋友甩后,在舍友的启发下,充分发挥了技术宅男自娱自乐的恶搞天分,做出了Facemash网站,对学校女生的相貌进行排名打分,结果网站访问流量过大 ...

随机推荐

  1. kafka可靠性

    文章转载自: http://blog.csdn.net/u013256816/article/details/71091774

  2. java高cpu占用和高内存占用问题排查 (转)

    高cpu占用 1.top命令:Linux命令.可以查看实时的CPU使用情况.也可以查看最近一段时间的CPU使用情况. 2.PS命令:Linux命令.强大的进程状态监控命令.可以查看进程以及进程中线程的 ...

  3. ES6的新特性(1)——ES6 的概述

    ES6 的概述 首先,感谢马伦老师的ES6新特性的教程. ECMAScript 和 JavaScript 的关系是 ECMAScript 和 JavaScript 的关系是,前者是后者的规格,后者是前 ...

  4. 中国剩余定理---FZU 1402 猪的安家

    J - 猪的安家 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  5. lintcode-208-赋值运算符重载

    208-赋值运算符重载 实现赋值运算符重载函数,确保: 新的数据可准确地被复制 旧的数据可准确地删除/释放 可进行 A = B = C 赋值 说明 本题只适用于C++,因为 Java 和 Python ...

  6. 团队项目-BUG挖掘

    测试硬件: 华为畅享5 测试平台: 安卓5.1 测试项目Git地址: https://github.com/RABITBABY/We-have-bing 测试Apk来源地址: http://www.a ...

  7. php 计算本周星期一、本月第一天 本月最后一天 下个月第一天

    本周一echo date('Y-m-d',(time()-((date('w')==0?7:date('w'))-1)*24*3600)); //w为星期几的数字形式,这里0为周日 本周日 echo  ...

  8. appium1.6.3/1.6.4/1.6.5版本下如何支持安卓下ByName定位

    1. 换其他定位方式,比如用xpath代替 2. 使用ByAccessibilityId代替,感觉没什么效果 一招修改源码解决问题根源,修改方法如下: 找到你的appium\node_modules\ ...

  9. Vue 取出记录数后,页面显示刚开始显示部分,点击更多显示全部

    实例的实现,是使用computed计算属性,还有对数组使用.slice函数,不改变原数据对象. <div id="app"> <ul> <li v-f ...

  10. 【bzoj5173】[Jsoi2014]矩形并 扫描线+二维树状数组区间修改区间查询

    题目描述 JYY有N个平面坐标系中的矩形.每一个矩形的底边都平行于X轴,侧边平行于Y轴.第i个矩形的左下角坐标为(Xi,Yi),底边长为Ai,侧边长为Bi.现在JYY打算从这N个矩形中,随机选出两个不 ...