转自:http://blog.csdn.net/kezunhai/article/details/50176209

================华丽分割线=================这部分来自知乎====================

链接:http://www.zhihu.com/question/33272629/answer/60279003

有关action recognition in videos, 最近自己也在搞这方面的东西,该领域水很深,不过其实主流就那几招,我就班门弄斧说下video里主流的:

Deep Learning之前最work的是INRIA组的Improved Dense Trajectories(IDT) + fisher vector, paper and code:
LEAR - Improved Trajectories Video Description
基本上INRIA的东西都挺work 恩..

然后Deep Learning比较有代表性的就是VGG组的2-stream:
http://arxiv.org/abs/1406.2199
其实效果和IDT并没有太大区别,里面的结果被很多人吐槽难复现,我自己也试了一段时间才有个差不多的数字。

然后就是在这两个work上面就有很多改进的方法,目前的state-of-the-art也是很直观可以想到的是xiaoou组的IDT+2-stream:
http://wanglimin.github.io/papers/WangQT_CVPR15.pdf

还有前段时间很火,现在仍然很多人关注的G社的LSTM+2-stream: 
http://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43793.pdf

然后安利下zhongwen同学的paper:
http://www.cs.cmu.edu/~zhongwen/pdf/MED_CNN.pdf

最后你会发现paper都必需和IDT比,

================华丽分割线=================这部分也来自知乎====================

链接:http://www.zhihu.com/question/33272629/answer/60163859

视频方面的不了解,可以聊一聊静态图像下的~
[1] Action Recognition from a Distributed Representation of Pose and
Appearance, CVPR,2010
[2] Combining Randomization and Discrimination for Fine-Grained Image
Categorization, CVPR,2011
[3] Object and Action Classification with Latent Variables, BMVC, 2011
[4] Human Action Recognition by Learning Bases of Action Attributes and Parts,
ICCV, 2011
[5] Learning person-object interactions for action recognition in still images,
NIPS, 2011
[6] Weakly Supervised Learning of Interactions between Humans and Objects,
PAMI, 2012
[7] Discriminative Spatial Saliency for Image Classification, CVPR, 2012
[8] Expanded Parts Model for Human Attribute and Action Recognition in Still
Images, CVPR, 2013
[9] Coloring Action Recognition in Still Images, IJCV, 2013
[10] Semantic Pyramids for Gender and Action Recognition, TIP, 2014
[11] Actions and Attributes from Wholes and Parts, arXiv, 2015
[12] Contextual Action Recognition with R*CNN, arXiv, 2015
[13] Recognizing Actions Through Action-Specific Person Detection, TIP, 2015

2010之前的都没看过,在10年左右的这几年(11,12)主要的思路有3种:1.以所交互的物体为线索(person-object interaction),建立交互关系,如文献5,6;2.建立关于姿态(pose)的模型,通过统计姿态(或者更广泛的,部件)的分布来进行分类,如文献1,4,还有个poselet上面好像没列出来,那个用的还比较多;3.寻找具有鉴别力的区域(discriminative),抑制那些meaningless 的区域,如文献2,7。10和11也用到了这种思想。
文献9,10都利用了SIFT以外的一种特征:color name,并且描述了在动作分类中如何融合多种不同的特征。
文献12探讨如何结合上下文(因为在动作分类中会给出人的bounding box)。
比较新的工作都用CNN特征替换了SIFT特征(文献11,12,13),结果上来说12是最新的。

静态图像中以分类为主,检测的工作出现的不是很多,文献4,13中都有关于检测的工作。可能在2015之前分类的结果还不够promising。现在PASCAL VOC 2012上分类mAP已经到了89%,以后的注意力可能会更多地转向检测。

================华丽分割线=================这部分来自互联网====================

[1] http://lear.inrialpes.fr/software(干货较多,可以进去浏览浏览)

[2]  Action Recognition
Paper Reading

Tian, YingLi, et
al. "Hierarchical filtered motion for action recognition in crowded
videos." Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on 42.3 (2012): 313-323.

  1. A new 3D interest point
    detector, based on 2D Harris and Motion History Image (MHI). Essentially, 2D
    Harris points with recent motion are selected as interest point.
  2. A new descriptors based on HOG
    on image intensity and MHI. Some filtering is performed to remove cluttered
    motion and normalize descriptors.
  3. KTH and MSR Action dataset

Yuan, Junsong,
Zicheng Liu, and Ying Wu. "Discriminative subvolume search for efficient
action detection." Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE, 2009.

  1. A discriminative matching
    techniques based on mutual information and nearest neighbor algorithm
  2. A better upper bound for
    Branching and Bounding to locate matched action that maximize mutual
    information
  3. The key idea is to decompose
    the search space into spatial and temporal.

Lampert, Christoph
H., Matthew B. Blaschko, and Thomas Hofmann. "Beyond sliding windows:
Object localization by efficient subwindow search." Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008.

  1. Code online: https://sites.google.com/site/christophlampert/software (Efficient
    Subwindow Search)
  2. Reducing the complexity of
    sliding window from n4 to averagely n2
  3. Branching and Bounding
    techniques
  4. Relies on a bounding funtion
    that gives a upper bound of the scoring function over a set of potential box
  5. works well with linear
    classifiers and BOW features.

Li, Li-Jia, et
al. "Object Bank: A High-Level Image Representation for Scene
Classification & Semantic Feature Sparsification." NIPS. Vol. 2. No.
3. 2010.

  1. Images are represented as a
    scale-invariant map of object detector response
  2. Detectors are applied to novel
    images in multiple scales. At each scale, a 3 level spatial pyramid is applied.
    Responses are concatenated to form the descriptors for the image.
  3. 200 objecst are selected from a
    1000 objects pool
  4. Evaluated In Scene classification
    task
  5. L1 and L1/L2 regularized LR is
    applied to discover sparsity. The the L1/L2 group sparsity, group is defined
    for each object, hence object level sparsity. Bear in mind that there are
    multiple entries in the descriptors for each object. (marginal improvements)

Wang, Heng, et
al. "Dense trajectories and motion boundary descriptors for action
recognition." International journal of computer vision 103.1 (2013):
60-79.

  1. Tracking over densely sampled
    points to get trajectories, in contrast with local representation. Not really
    dense sampling, grids are filtered by minEigen value criterion (Shi and Tomasi)
  2. Motion boundary (derivative
    over optical flow field), to overcome camera motion
  3. Code online: http://lear.inrialpes.fr/people/wang/dense_trajectories
  4. Optical Flow field is filtered
    by Median Filter. based on opencv
  5. Limit trajectory to overcome
    drift. Filter static point and error trajectories.
  6. Trajectory shape, HOG, HOF and MBH
    descriptors along the trajectory
  7. KTH (94.2%), Youtube (84.1%),
    Hollywood2 (58.2%), UCF Sports (88.0%), IXMAS (93.5%), UIUC (98.4%), Olympic
    Sports (74.1%), UCF50 (84.5%), HMDB51 (46.6%)

Liang, Xiaodan,
Liang Lin, and Liangliang Cao. "Learning latent spatio-temporal
compositional model for human action recognition." Proceedings of the 21st
ACM international conference on Multimedia. ACM, 2013.

  1. Laptev STIP with HOF and HOG,
    with BOW quantization
  2. Leaf node for detecting action
    parts
  3. Or node to account for
    intra-class variability
  4. And node to aggregate action in
    a frame
  5. Root node to identify temporal
    composition
  6. Contextual interaction
    (connecting leaf nodes)
  7. Everything is formulated in a
    latent SVM framework and solved by CCCP
  8. Since the leaf node can move
    around from one Or-node to another, a reconfiguration step is used to rearrange
    the feature vector
  9. UCF Youtube and Olympic Sports
    dataset

Sadanand,
Sreemanananth, and Jason J. Corso. "Action bank: A high-level
representation of activity in video." Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.

  1. 98.2% KTH, 95.0% UCF Sports,
    57.9% UCF50, 26.9% HMDB51
  2. 205 video clips used as
    template to detect action from novel video.
  3. Detectors are sampled from
    multi viewpoint and run with multiple scales
  4. Output of detectors are
    maxpooled for ST volume through various pooling unit
  5. "Action Spoting" for
    template detector
  6. Code online: http://www.cse.buffalo.edu/~jcorso/r/actionbank/

Liu, Jingen,
Benjamin Kuipers, and Silvio Savarese. "Recognizing human actions by
attributes." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on. IEEE, 2011.

  1. 22 manually selected action
    attributes as semantic representation
  2. Data Driven attributes as
    complementary information
  3. Attributes as latent variable,
    just the parts in DPM model
  4. Account for the class matching,
    attribute matching, attributes cooccurcance.
  5. STIP by 1D-Gabor detector.
    Gradient based + BOW over ST volume
  6. UIUC dataset, KTH, Olympic
    Sports Dataset

Niebles, Juan
Carlos, Hongcheng Wang, and Li Fei-Fei. "Unsupervised learning of human
action categories using spatial-temporal words." International Journal of
Computer Vision 79.3 (2008): 299-318.

  1. Unsupervised video
    categorizaton, using pLSA and LDA
  2. Action Localization
  3. Laptev's STIP is too sparse
    comparing with Dollar's
  4. Simple gradient based
    descriptors and PCA applied to reduce dimensionality --> rely on codebook to
    deal with invariance
  5. K-means with Euclidean distance
    metric
  6. pLSA or LDA on top of BOW (#
    topic is equal to the categories to be recognized)
  7. Each STIP is associated with a
    BOW, hence topic distribution, so it's trivial to perform Localization

Laptev, Ivan, et
al. "Learning realistic human actions from movies." Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008.

  1. Annotating videos by aligning
    transcriptes
  2. A movie dataset
  3. Space-Time interest points +
    HOG + HOF around a ST volume
  4. ST BOW. Given a video sequence,
    multiple way to segment it, each of which is called a channel
  5. Multi-Channel \chi^2 kernel
    classification. Channel selection using greedy shrink
  6. KTH (91.8%) and Movie (18.2% ~
    53.3%) dataset
  7. STIP + HOG and HOF code: http://www.di.ens.fr/~laptev/download.html

[3] Action Recognition Datasets

Links to Datasets:

Recent
Action Recognition Papers
:

[4] CVPR 2014 Tutorial
on  Emerging Topics in Human Activity Recognition

[5] http://yangxd.org/projects/surveillance/SED13

[6] Recognition of
human actions

Sample
sequences for each action (DivX-compressed)

person15_walking_d1_uncomp.avi
person15_jogging_d1_uncomp.avi
person15_running_d1_uncomp.avi
person15_boxing_d1_uncomp.avi
person15_handwaving_d1_uncomp.avi
person15_handclapping_d1_uncomp.avi

Action
database in zip-archives (DivX-compressed)

Note: The database is publicly available for non-commercial use. Please refer
to [Schuldt, Laptev and Caputo, Proc. ICPR'04, Cambridge,
UK ]
 if you use this database in your publications.

walking.zip(242Mb)
jogging.zip(168Mb)
running.zip(149Mb)
boxing.zip(194Mb)
handwaving.zip(218Mb)
handclapping.zip(176Mb)

Related
publications

"Recognizing Human Actions: A Local
SVM Approach",
Christian Schuldt, Ivan Laptev and Barbara Caputo; in Proc. ICPR'04,
Cambridge, UK. [Abstract PDF]

"Local Spatio-Temporal Image Features
for Motion Interpretation",
Ivan Laptev; PhD Thesis, 2004, Computational Vision and Active Perception
Laboratory (CVAP), NADA, KTH, Stockholm [AbstractPDF]

"Local Descriptors for Spatio-Temporal
Recognition",
Ivan Laptev and Tony Lindeberg; ECCV Workshop "Spatial Coherence for
Visual Motion Analysis" [AbstractPDF]

"Velocity adaptation of space-time
interest points",
Ivan Laptev and Tony Lindeberg; in Proc. ICPR'04, Cambridge, UK. [AbstractPDF]

"Space-Time Interest Points",
I. Laptev and T. Lindeberg; in Proc. ICCV'03, Nice, France,
pp.I:432-439. [AbstractPDF]

行为识别(action recognition)相关资料的更多相关文章

  1. 【计算机视觉】行为识别(action recognition)相关资料

    ================华丽分割线=================这部分来自知乎==================== 链接:http://www.zhihu.com/question/3 ...

  2. Recent papers on Action Recognition | 行为识别最新论文

    CVPR2019 1.An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognit ...

  3. CNN相关资料

    转子http://blog.csdn.net/qianqing13579/article/details/71076261 前言 入职之后,逐渐转到深度学习方向.很早就打算写深度学习相关博客了,但是由 ...

  4. Skeleton-Based Action Recognition with Directed Graph Neural Network

    Skeleton-Based Action Recognition with Directed Graph Neural Network 摘要 因为骨架信息可以鲁棒地适应动态环境和复杂的背景,所以经常 ...

  5. Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition

    Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition 摘要 基于骨架的动作识别因为 ...

  6. Collaborative Spatioitemporal Feature Learning for Video Action Recognition

    Collaborative Spatioitemporal Feature Learning for Video Action Recognition 摘要 时空特征提取在视频动作识别中是一个非常重要 ...

  7. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition (ST-GCN)

    Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 摘要 动态人体骨架模型带有进行动 ...

  8. iOS10以及xCode8相关资料收集

    兼容iOS 10 资料整理笔记 源文:http://www.jianshu.com/p/0cc7aad638d9 1.Notification(通知) 自从Notification被引入之后,苹果就不 ...

  9. AssetBundle机制相关资料收集

    原地址:http://www.cnblogs.com/realtimepixels/p/3652075.html AssetBundle机制相关资料收集 最近网友通过网站搜索Unity3D在手机及其他 ...

随机推荐

  1. UVa 1442 (线性扫描) Cave

    对于一个水坑,水平面肯定是相等的.(废话,不然为什么叫水ping面) 因为水面不能碰到天花板,所以将水面向两边延伸要么碰到墙壁要么延伸到洞穴外面去. 设h(i)表示向左延伸不会碰到天花板的最高水平面, ...

  2. 同步内核缓冲区sync、fsync和fdatasync函数

    转自http://www.2cto.com/os/201409/339460.html 同步内核缓冲区 1.缓冲区简介 人生三大错觉之一:在调用函数write()时,我们认为该函数一旦返回,数据便已经 ...

  3. js解决快速回车重复订单提交(客户端方式)

    Html代码: <form action="order_add_data.php" method="post" name="order_adds ...

  4. C的结构体使用

    C的结构体演示 #include <stdio.h> struct A //建立结构体A { char *name; int s1; struct A *next; }; void mai ...

  5. HDU1495 非常可乐

    解题思路:简单的宽搜,见代码: #include<cstdio> #include<cstring> #include<algorithm> #include< ...

  6. UVa725 - Division

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int ...

  7. 【英语】Bingo口语笔记(30) - 表示“拒绝”

  8. [转] 从 dll 程序集中动态加载窗体

    无涯 原文 从 dll 程序集中动态加载窗体 [原创] 昨天晚上花了一晚上时间写了一个从程序集中动态加载窗体的程序.将任何包含窗体的代码编译成 dll 文件,再把 dll 文件拷贝到本程序的目录下,本 ...

  9. Android随笔--使用ViewPager实现简单地图片的左右滑动切换

    Android中图片的左右切换随处可见,今天我也试着查阅资料试着做了一下,挺简单的一个小Demo,却也发现了一些问题,话不多说,上代码~: 使用了3个xml文件作为ViewPager的滑动page,布 ...

  10. Java 与无符号那些事儿

    最近在使用 Java 作为 WebSocket 客户端连接 Node.js 的 WebSocket 服务器的时候,由于使用的客户端库比较老,所以遇到了字节符号的问题,上网查了一下,看到这篇文章写的很有 ...