UVA 11806 Cheerleaders dp+容斥
In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the field. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an M × N rectangular grid. The constraints for placing cheerleaders
are described below:
• There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
• There can be at most one cheerleader in a cell.
• All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The first line of input contains a positive integer T ≤ 50, which denotes the number of test cases. T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2 ≤ M,
N ≤ 20 and K ≤ 500. Here M is the number of rows and N is the number of columns in the grid. K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will first contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo 1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2
题意:给定n*m的棋盘和k个一样的女孩,最上面和最下面一行,最左边和最右边一列至少有一个女孩,问有多少中方案数。
题解:设最上面一行不放石头的方案为集合A,最下面一行不放的方案为集合B,最左边不放的方案为集合C,最右边放的方案为集合D,全集为S。那么答案就是|S|-|A∪B∪C∪D|,求|A∪B∪C∪D|直接用容斥原理就好。
至于求ABCD, 我们设定dp[i][j]表示 i个格子放了j个女孩的方案数 dp[i][j] = dp[i-1][j-1]+dp[i-1][j];
//meek
///#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <sstream>
#include <queue>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
//**************************************** const int N=+;
const ll INF = 1ll<<;
const int inf = ;
const int MOD= ; int n,k,m;
ll dp[N][N];
int solve() {
int ans = dp[n*m][k]%MOD;
for(int i=;i<(<<);i++) {
int a = n, b = m, cnt = ;
if(i&(<<)) cnt++,a--;
if(i&(<<)) cnt++,a--;
if(i&(<<)) cnt++,b--;
if(i&(<<)) cnt++,b--;
if(cnt&) ans = (ans - dp[a*b][k]+MOD)%MOD;
else ans = (ans + dp[a*b][k]+MOD)%MOD;
}
return ans%MOD;
}
void init() {
for(int i=;i<=;i++) dp[i][i] = , dp[i][] = ;
for(int i=;i<=;i++) {
for(int j=;j<i;j++) {
dp[i][j] = dp[i-][j] + dp[i-][j-];
dp[i][j] %= MOD;
}
}
}
int main() {
int T, cas = ;
init();
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&n,&m,&k);
printf("Case %d: %d\n",cas++,solve());
}
return ;
}
代码
UVA 11806 Cheerleaders dp+容斥的更多相关文章
- uva 11806 Cheerleaders (容斥)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)
UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...
- uva 11806 Cheerleaders
// uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
- Codeforces 611C New Year and Domino DP+容斥
"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
随机推荐
- vnext 技术两篇文章和评论
研究vnext的两篇 好文章,重点看评论! http://www.cnblogs.com/shanyou/p/4589930.html http://www.cnblogs.com/shanyou/p ...
- LNMP下wordpress无法切换主题,只显示当前主题解决方法
最近在lnmp下发现wordpress后台无法切换主题,只能显示当前主题,开始还以为是文件没传完,又重置了一遍,还是一样.百度得知,原来军哥的LNMP安装包默认关闭了scandir函数,为了安全考虑. ...
- editplus文本编辑器
EditPlus中文破解版是一款功能强大的文本编辑器,拥有无限制的撤消与重做.英文拼字检查.自动换行.列数标记.搜寻取代.同时编辑多文件.全屏幕浏览功能.还有一个好用的功能,就是它有监视剪贴板的功能, ...
- 3-附1 ->和*的区别
问题: c++ .和 ->有什么区别? 还有什么是继承什么是派生?-------------------------------------------------------------- 比 ...
- 38.基于FPGA的FIR设计二
利用fdatool工具生成的滤波器系数与用代码生成的系数不一致,在网上查询得知,fdatool生成的滤波器系数是有符号小数,而且是浮点型,而代码生成的滤波器系数是定点型有符号数,故不一样. 浮点型数据 ...
- DXP中原理图与PCB图元件互找
在原理图中找到元件,快捷键TS即可在PCB中找到元件,且为选中状态.
- 莫名戳中"肋骨"的文章
1 起初,我们总是会害怕,害怕不能得到自己渴望的物质生活,害怕遇不到那个好好爱自己的人,害怕失去青春也换不回事业上的进步,害怕会做下一个让自己悔恨的决定,可这一路,我们就是这样踩着自己的害怕和悔恨走来 ...
- JPA学习---第九节:JPA中的一对多双向关联与级联操作
一.一对多双向关联与级联操作 1.创建项目,配置文件代码如下: <?xml version="1.0" encoding="UTF-8"?> < ...
- 软件工程实践小队--团队项目NABC
团队项目的NABC 1) N (Need 需求) 作为一个网上教学问答系统,用户的基本需求很明确,即为:提问.搜索.浏览.回答.编辑.评论.附加需求还有: 获取金币.提升等级. 提问:关于一门学科,用 ...
- 前端之JavaScript第一天学习(2)-JavaScript 使用
HTML 中的脚本必须位于 <script> 与 </script> 标签之间.脚本可被放置在 HTML 页面的 <body> 和 <head> 部分中 ...