In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the field. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an M × N rectangular grid. The constraints for placing cheerleaders
are described below:
• There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
• There can be at most one cheerleader in a cell.
• All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The first line of input contains a positive integer T ≤ 50, which denotes the number of test cases. T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2 ≤ M,
N ≤ 20 and K ≤ 500. Here M is the number of rows and N is the number of columns in the grid. K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will first contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo 1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2

题意:给定n*m的棋盘和k个一样的女孩,最上面和最下面一行,最左边和最右边一列至少有一个女孩,问有多少中方案数。

题解:设最上面一行不放石头的方案为集合A,最下面一行不放的方案为集合B,最左边不放的方案为集合C,最右边放的方案为集合D,全集为S。那么答案就是|S|-|A∪B∪C∪D|,求|A∪B∪C∪D|直接用容斥原理就好。

至于求ABCD,  我们设定dp[i][j]表示  i个格子放了j个女孩的方案数   dp[i][j] = dp[i-1][j-1]+dp[i-1][j];

//meek
///#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <sstream>
#include <queue>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
//**************************************** const int N=+;
const ll INF = 1ll<<;
const int inf = ;
const int MOD= ; int n,k,m;
ll dp[N][N];
int solve() {
int ans = dp[n*m][k]%MOD;
for(int i=;i<(<<);i++) {
int a = n, b = m, cnt = ;
if(i&(<<)) cnt++,a--;
if(i&(<<)) cnt++,a--;
if(i&(<<)) cnt++,b--;
if(i&(<<)) cnt++,b--;
if(cnt&) ans = (ans - dp[a*b][k]+MOD)%MOD;
else ans = (ans + dp[a*b][k]+MOD)%MOD;
}
return ans%MOD;
}
void init() {
for(int i=;i<=;i++) dp[i][i] = , dp[i][] = ;
for(int i=;i<=;i++) {
for(int j=;j<i;j++) {
dp[i][j] = dp[i-][j] + dp[i-][j-];
dp[i][j] %= MOD;
}
}
}
int main() {
int T, cas = ;
init();
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&n,&m,&k);
printf("Case %d: %d\n",cas++,solve());
}
return ;
}

代码

UVA 11806 Cheerleaders dp+容斥的更多相关文章

  1. uva 11806 Cheerleaders (容斥)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  3. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  4. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  5. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  6. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  7. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  8. Codeforces 611C New Year and Domino DP+容斥

    "#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...

  9. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

随机推荐

  1. poj 1679 The Unique MST

    题目连接 http://poj.org/problem?id=1679 The Unique MST Description Given a connected undirected graph, t ...

  2. 使用spring dynamic modules的理由

    spring的主要功能 spring框架提供了轻量级的容器和非侵入式的编程模型,这来自于其依赖注入.AOP和便携服务概念. osgi的主要功能 osgi服务平台提供了动态的应用程序执行环境,支持模块( ...

  3. iOS8 蓝牙设备的重连接(retrieve) Swift实现

    今天App写到了蓝牙重连的阶段,以前针对sdk 6.0写的代码,蓝牙设备的回复是通过 - (void)retrievePeripherals:(NSArray *)peripheralUUIDs 然后 ...

  4. 012--VS2013 C++ 斜角景物地图贴图-位图

    因为bmp图片上传不了,只能截图啦 //全局变量HDC mdc;HBITMAP fullmap;//声明位图对象,在初始化函数中完成的斜角地图会保存在这个位图中const int rows = 10, ...

  5. Linux C 文件与目录4 将缓冲区数据写入磁盘

    将缓冲区数据写入磁盘 所谓缓冲区,是Linux系统对文件的一种处理方式.在对文件进行写操作时,并没有立即把数据写入到磁盘,而是把数据写入到缓冲区.如果需要把数据立即写入到磁盘,可以使用sync函数.用 ...

  6. [网络配置相关]——ifconfig命令、ip命令、route命令

    ifconfig命令 1. 查看已被激活的网卡的详细信息 # ifconfig eth0 Link encap:Ethernet HWaddr 00:30:67:F2:10:CF inet addr: ...

  7. MSSQL Transaction[事务] and Procedure[存储过程]

    --事务分三种 --1.显示事务 --我们手动begin transaction ...... commit transaction/rollback transaction --上面这种写法叫做“显 ...

  8. "Mac OS X"想要进行更改。键入管理员的名称和密码以允许执行此操作("Mac OS X"想使用系统钥匙串)

    不知什么时候开始,每次我在运行xcode在真机上,或者archive打包的时间,都会弹出输入用户名和密码的框,搞的烦死了: 解决方法: 打开钥匙串访问 双击那些密钥弹出框: 改变到允许所有应用程序访问 ...

  9. hdu 2629 Identity Card (字符串解析模拟题)

    这题是一个字符串模拟水题,给12级学弟学妹们找找自信的,嘿嘿; 题目意思就是要你讲身份证的上的省份和生日解析出来输出就可以了: http://acm.hdu.edu.cn/showproblem.ph ...

  10. EntityFramework走马观花之CRUD(上)

    对于任何一个ORM框架,CRUD都是其核心功能,可以这么说,CRUD功能实现得好坏,直接决定了此ORM框架的命运. CRUD是英文Create.Read.Update.Delete四个单词的缩写,对应 ...