UVA 11806 Cheerleaders dp+容斥
In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the field. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an M × N rectangular grid. The constraints for placing cheerleaders
are described below:
• There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
• There can be at most one cheerleader in a cell.
• All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The first line of input contains a positive integer T ≤ 50, which denotes the number of test cases. T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2 ≤ M,
N ≤ 20 and K ≤ 500. Here M is the number of rows and N is the number of columns in the grid. K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will first contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo 1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2
题意:给定n*m的棋盘和k个一样的女孩,最上面和最下面一行,最左边和最右边一列至少有一个女孩,问有多少中方案数。
题解:设最上面一行不放石头的方案为集合A,最下面一行不放的方案为集合B,最左边不放的方案为集合C,最右边放的方案为集合D,全集为S。那么答案就是|S|-|A∪B∪C∪D|,求|A∪B∪C∪D|直接用容斥原理就好。
至于求ABCD, 我们设定dp[i][j]表示 i个格子放了j个女孩的方案数 dp[i][j] = dp[i-1][j-1]+dp[i-1][j];
//meek
///#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <sstream>
#include <queue>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
//**************************************** const int N=+;
const ll INF = 1ll<<;
const int inf = ;
const int MOD= ; int n,k,m;
ll dp[N][N];
int solve() {
int ans = dp[n*m][k]%MOD;
for(int i=;i<(<<);i++) {
int a = n, b = m, cnt = ;
if(i&(<<)) cnt++,a--;
if(i&(<<)) cnt++,a--;
if(i&(<<)) cnt++,b--;
if(i&(<<)) cnt++,b--;
if(cnt&) ans = (ans - dp[a*b][k]+MOD)%MOD;
else ans = (ans + dp[a*b][k]+MOD)%MOD;
}
return ans%MOD;
}
void init() {
for(int i=;i<=;i++) dp[i][i] = , dp[i][] = ;
for(int i=;i<=;i++) {
for(int j=;j<i;j++) {
dp[i][j] = dp[i-][j] + dp[i-][j-];
dp[i][j] %= MOD;
}
}
}
int main() {
int T, cas = ;
init();
scanf("%d",&T);
while(T--) {
scanf("%d%d%d",&n,&m,&k);
printf("Case %d: %d\n",cas++,solve());
}
return ;
}
代码
UVA 11806 Cheerleaders dp+容斥的更多相关文章
- uva 11806 Cheerleaders (容斥)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)
UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...
- uva 11806 Cheerleaders
// uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
- Codeforces 611C New Year and Domino DP+容斥
"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
随机推荐
- 教你怎么安装Redis
以下命令以root用户运行:#cd /tmp/#wget http://redis.googlecode.com/files/redis-2.6.11.tar.gz#tar xzf redis-2.6 ...
- 取精华、去糟粕!适合iOS开发者的15大网站推荐
iOS开发者若想使技艺达到炉火纯青的地步,就要不断借鉴他人的有益经验,紧跟新兴科技和工具的步伐.除了Apple的开发者中心,其他网站上的文章和资源也具备参考价值,若能学得一二,必能锦上添花.不过,时间 ...
- 关于Objective-C格式化处理相关规范
Objective-C格式字符串和C#有很大的差别,下面我们就来看看 在C#中我们可以这么做,简单例举几个: //格式化输出字符串 string word = "world"; s ...
- EntityFramework.Extended扩展用法
EntityFramework.Extended是一个基于EntityFramework框架 IQueryable类型的扩展方法,包括Update.Delete. 它的优点就是 修改删除操作不仅仅有I ...
- Python MYSQL - tiny ETL tool - 文件操作和数据库操作
import os import MySQLdb Con= MySQLdb.connect(host=',db='test') #链接数据库 cur=Con.cursor() os.chdir(&qu ...
- 团队项目——二手书店(NABC分析)
特色:可发布 N:登陆用户可自行发布售书信息,为学生提供一个网上交易旧书的平台. A:后台数据库管理,对于新登陆的用户信息加以整合,统一发布. B:想出手旧书的学生可从中获取不小的利益,而且也可以实现 ...
- mobiscroll 控件的使用(手机端日历控件)
先上一张图吧: 控件的下载地址:http://www.kuitao8.com/20140604/2615.shtml 文档API地址:http://docs.mobiscroll.com/2-13-2 ...
- eclipse for jee版配置tomcat
在网上搜到的大多都是插件配置,其实默认的就可以配置tomcat的. 第一步:New -> Other -> Server ,然后选择Apache下的tomcat的版本. 注意:如果Next ...
- 2. ProGit-Git基础
(1) 取得项目的Git仓库 从工作目录中初始化新仓库 git init 从现有仓库克隆 git clone ssh协议 http协议 (2) 检查当前文件状态 git status (3) ...
- 【转载】Mybatis多参数查询映射
转载地址:http://www.07net01.com/zhishi/402787.html 最近在做一个Mybatis的项目,由于是接触不久,虽然看了一下资料,但在实际开发中还是暴 露了很多问题,其 ...