P2320 06湖南 鬼谷子的钱袋

    • 171通过
    • 480提交
  • 题目提供者xmyzwls
  • 标签各省省选
  • 难度普及+/提高

提交该题 讨论 题解 记录

最新讨论

  • 题目有误
  • 数据需要特判
  • 评测系统太神了

题目描述

输入输出格式

输入格式:

输出格式:

输入输出样例

输入样例#1:

3
输出样例#1:

2
1 2
分析:首先要把题目读懂,即可以用n个1,1个2~m的数,通过加法组合成1~m的所有整数,当然,这所有的数字加起来要等于m,似乎有点复杂,该怎么处理呢?
显然,不好直接处理本题,那么先假设一下m=10,如果想要组成1~m的所有整数,那么1是必须要的,因为如果不要1就不能组成1了,然后想,如果有一部分数通过加上一个数等于另外一部分数该多好!
那么可以想到把10个数分成1~5和6~10,那么显然,1~5的数字加上5就能够组成6~10,所以取5,然后可以发现这就是不断地求子问题,那么递归,但是5是奇数怎么办?因为c++中的除法向下取整,所以分成1~2,3~5,1~2必须加上3才能组成3~5,那么把3取上,3又分成1和2,3显然1必须加上2才能取2,3,那么取2,因为1是必须取的,所以取1.
透过现象看本质,可以发现求解的过程很像倍增,每一次可以取的数目都*2,那么如果2^n > m,那么n即为所求的袋子数,如何求每个袋子装的金币呢?根据之前模拟的过程记录答案即可.
通过这道题要明白,一些用字母表示的数不好直接处理,可以设特殊值,从现象看本质,最后想到求解的方法!
代码可以缩成1个循环!
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int m,tot,cnt,ans[]; int main()
{
scanf("%d", &m);
for (int i = ; ; i = i * )
{
tot++;
if (i > m)
{
printf("%d\n", tot - );
break;
}
}
printf("1 "); //1是肯定要选的
while (m / != )
{
++cnt;
if (m % == )
ans[cnt] = m / ;
if (m % == )
ans[cnt] = m / + ;
m /= ;
}
for (int i = cnt; i >= ; i--) //因为要从小到大输出,所以逆序输出
printf("%d ", ans[i]); return ;
}

洛谷P2320 鬼谷子的钱袋的更多相关文章

  1. 洛谷P2320鬼谷子的钱袋.

    题目 这个题考察二进制分解. \(Code\) #include <bits/stdc++.h> #pragma GCC optimize(2) #pragma GCC optimize( ...

  2. 【洛谷·P2320】鬼谷子的钱袋

    这道题很神奇 我们举一个例子,m=12 那么我们可以把它分成两部分,L和R: (1,2,,6)(7,8,,12) 我们可以发现R中的数都可以由12/2和左边的数组合得到 那么我们对L再分------ ...

  3. 洛谷P2320 [HNOI2006]鬼谷子的钱袋

    https://www.luogu.org/problem/show?pid=2320#sub 题目描述全是图 数学思维,分治思想 假设总数为n 从n/2+1到n的数都可以用1~n的数+n/2表示出来 ...

  4. 洛谷 P2320 [HNOI2006]鬼谷子的钱袋

    题目传送门 解题思路: 对于每一个数i,我们都可以用i/2来表示,而对于i/2我们可以用i/4表示......(以此类推) 举个例子,对于10,我们可以用5 + 5来表示,而5可以用 3 + 2表示, ...

  5. P2320鬼谷子的钱袋(分治)

    ------------恢复内容开始------------ 描述:https://www.luogu.com.cn/problem/P2320 m个金币,装进一些钱袋.钱袋中大于1的钱互不相同. 问 ...

  6. 洛谷2320 bzoj1192 鬼谷子的钱袋

    题目链接 题意概述:把正整数n分为m个正整数,m个正整数中不允许出现复数个非1的正整数,保证所有小于n的正整数都可以用一部分正整数的和表示,并且使m尽量小. 这道题不知道为啥bzoj上没有要求输出方案 ...

  7. P2320 [HNOI2006]鬼谷子的钱袋

    洛谷2320 06湖南 鬼谷子的钱袋 来源 题目描述 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的拍卖行(聚宝商行 ...

  8. p2320&bzoj1192 鬼谷子的钱袋

    传送门(洛谷) 传送门(bzoj) 题目 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的拍卖行(聚宝商行)将要举行一 ...

  9. 题解 P2320 【[HNOI2006]鬼谷子的钱袋】

    P2320 [HNOI2006]鬼谷子的钱袋 挺有趣的一道题,之所以发这篇题解是因为感觉思路的更清晰一点qwq 此题主要有两种方法: 一.分治思想 例如要凑出1~20,假如我们已经能凑出1~10了,那 ...

随机推荐

  1. 20个超实用的JavaScript技巧及最佳实践

    1.第一次给变量赋值时,别忘记var关键字   给一个未声明的变量赋值,该变量会被自动创建为全局变量,在JS开发中,应该避免使用全局变量.   2.使用===替换==   并且永远不要使用=或!=. ...

  2. 黄聪:wordpress如何扩展TinyMCE编辑器,添加自定义按钮及功能

    在functions.php文件里面添加: add_action( 'admin_init', 'my_tinymce_button' ); function my_tinymce_button() ...

  3. OAF_EO系列7 - OAException异常处理及实现(案例)

    2014-06-12 Created By BaoXinjian

  4. C语言小技巧

    /* 求阶乘时设置最大调用层数,防止栈占满 当从函数进入另一个函数时当前函数的内容会入栈,另一个函数调用完时在出栈 */ int factorial(int n, int level) { //pri ...

  5. ci模板布局方式

    1.修改Loader链式加载header和footer方式 参考:http://stackoverflow.com/questions/9540576/header-and-footer-in-cod ...

  6. “/wechat”应用程序中的服务器错误。

    对路径“C:\inetpub\wwwroot3\wechat\img\qrcode\”的访问被拒绝. “/wechat”应用程序中的服务器错误. 对路径“C:\inetpub\wwwroot3\wec ...

  7. JAVA元运算符,一元运算符,二元运算符,三元运算符

    一元运算符: 序号 一元运算符 说明 1 i++ 给i加1 2 i-- 给i减1 3 ++i 给i加1 4 --i 给i减1 i++;/*例:int i=1;i++;//先将i的值1赋值给i,然后i再 ...

  8. 终于有了自己的园子,Happy一下

    终于找到了一个比较好的写博客的地方,cnblogs,不错,我想你正是我所需要的功能!这是开山以来的第一篇文章,终于有了自己的园子,Happy一下.

  9. [ActionScript 3.0] AS3中Loader无法彻底卸载

    我测试发现,实例化的Loader无法彻底卸载,同行有没有办法,求赐教! import flash.display.Loader; import flash.net.URLRequest; import ...

  10. Codeforces 519E A and B and Lecture Rooms [倍增法LCA]

    题意: 给你一棵有n个节点的树,给你m次询问,查询给两个点,问树上有多少个点到这两个点的距离是相等的.树上所有边的边权是1. 思路: 很容易想到通过记录dep和找到lca来找到两个点之间的距离,然后分 ...