P2320 06湖南 鬼谷子的钱袋

    • 171通过
    • 480提交
  • 题目提供者xmyzwls
  • 标签各省省选
  • 难度普及+/提高

提交该题 讨论 题解 记录

最新讨论

  • 题目有误
  • 数据需要特判
  • 评测系统太神了

题目描述

输入输出格式

输入格式:

输出格式:

输入输出样例

输入样例#1:

3
输出样例#1:

2
1 2
分析:首先要把题目读懂,即可以用n个1,1个2~m的数,通过加法组合成1~m的所有整数,当然,这所有的数字加起来要等于m,似乎有点复杂,该怎么处理呢?
显然,不好直接处理本题,那么先假设一下m=10,如果想要组成1~m的所有整数,那么1是必须要的,因为如果不要1就不能组成1了,然后想,如果有一部分数通过加上一个数等于另外一部分数该多好!
那么可以想到把10个数分成1~5和6~10,那么显然,1~5的数字加上5就能够组成6~10,所以取5,然后可以发现这就是不断地求子问题,那么递归,但是5是奇数怎么办?因为c++中的除法向下取整,所以分成1~2,3~5,1~2必须加上3才能组成3~5,那么把3取上,3又分成1和2,3显然1必须加上2才能取2,3,那么取2,因为1是必须取的,所以取1.
透过现象看本质,可以发现求解的过程很像倍增,每一次可以取的数目都*2,那么如果2^n > m,那么n即为所求的袋子数,如何求每个袋子装的金币呢?根据之前模拟的过程记录答案即可.
通过这道题要明白,一些用字母表示的数不好直接处理,可以设特殊值,从现象看本质,最后想到求解的方法!
代码可以缩成1个循环!
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int m,tot,cnt,ans[]; int main()
{
scanf("%d", &m);
for (int i = ; ; i = i * )
{
tot++;
if (i > m)
{
printf("%d\n", tot - );
break;
}
}
printf("1 "); //1是肯定要选的
while (m / != )
{
++cnt;
if (m % == )
ans[cnt] = m / ;
if (m % == )
ans[cnt] = m / + ;
m /= ;
}
for (int i = cnt; i >= ; i--) //因为要从小到大输出,所以逆序输出
printf("%d ", ans[i]); return ;
}

洛谷P2320 鬼谷子的钱袋的更多相关文章

  1. 洛谷P2320鬼谷子的钱袋.

    题目 这个题考察二进制分解. \(Code\) #include <bits/stdc++.h> #pragma GCC optimize(2) #pragma GCC optimize( ...

  2. 【洛谷·P2320】鬼谷子的钱袋

    这道题很神奇 我们举一个例子,m=12 那么我们可以把它分成两部分,L和R: (1,2,,6)(7,8,,12) 我们可以发现R中的数都可以由12/2和左边的数组合得到 那么我们对L再分------ ...

  3. 洛谷P2320 [HNOI2006]鬼谷子的钱袋

    https://www.luogu.org/problem/show?pid=2320#sub 题目描述全是图 数学思维,分治思想 假设总数为n 从n/2+1到n的数都可以用1~n的数+n/2表示出来 ...

  4. 洛谷 P2320 [HNOI2006]鬼谷子的钱袋

    题目传送门 解题思路: 对于每一个数i,我们都可以用i/2来表示,而对于i/2我们可以用i/4表示......(以此类推) 举个例子,对于10,我们可以用5 + 5来表示,而5可以用 3 + 2表示, ...

  5. P2320鬼谷子的钱袋(分治)

    ------------恢复内容开始------------ 描述:https://www.luogu.com.cn/problem/P2320 m个金币,装进一些钱袋.钱袋中大于1的钱互不相同. 问 ...

  6. 洛谷2320 bzoj1192 鬼谷子的钱袋

    题目链接 题意概述:把正整数n分为m个正整数,m个正整数中不允许出现复数个非1的正整数,保证所有小于n的正整数都可以用一部分正整数的和表示,并且使m尽量小. 这道题不知道为啥bzoj上没有要求输出方案 ...

  7. P2320 [HNOI2006]鬼谷子的钱袋

    洛谷2320 06湖南 鬼谷子的钱袋 来源 题目描述 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的拍卖行(聚宝商行 ...

  8. p2320&bzoj1192 鬼谷子的钱袋

    传送门(洛谷) 传送门(bzoj) 题目 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的拍卖行(聚宝商行)将要举行一 ...

  9. 题解 P2320 【[HNOI2006]鬼谷子的钱袋】

    P2320 [HNOI2006]鬼谷子的钱袋 挺有趣的一道题,之所以发这篇题解是因为感觉思路的更清晰一点qwq 此题主要有两种方法: 一.分治思想 例如要凑出1~20,假如我们已经能凑出1~10了,那 ...

随机推荐

  1. 静态HTML页面不缓存js文件的方法

    今天做项目时候遇到一个问题,由于采用了生成静态的CMS系统,但是页面头部需要显示用户登录的信息,也就是,没有登录时,显示登录框,用户登录后,则显 示登录信息.于是用到了js调用php文件的方法.但是由 ...

  2. 调试压缩后的Javascript文件:在 Chrome 和 Safari ,选择“脚本”标签,找到相应的文件,然后点击“{}”图标(pretty print,在面板底部)

  3. 基于jquery的表单校验插件 - formvalidator使用体验

    下载地址:http://www.formvalidator.net/ 基本样例 <form action="/registration" method="POST& ...

  4. RocketMQ术语[转]

    RocketMQ RocketMQ是一款分布式.队列模型的消息中间件,具有以下特点:能够保证严格的消息顺序 能够保证严格的消息顺序 提供丰富的消息拉取模式 高效的订阅者水平扩展能力 实时的消息订阅机制 ...

  5. IronPython调用C# DLL函数方法

    C# DLL源码 using System; using System.Collections.Generic; using System.Text; using System.Security.Cr ...

  6. JAVA如何将PDF转换SWF格式的FLASH

    1. 需要用到的工具 SWFTools 下载地址 http://www.swftools.org/download.html,下载完成以后,直接安装就行  2.下面就是重点喽,详见Java代码解析 附 ...

  7. java小程序实例 闰年

    判断闰年. package com.test; import java.util.Scanner; import org.junit.Test; public class TestRunNian { ...

  8. MongoDB 多条件组合查询

    组合条件查询json格式语法 { "$and": [ { "Date": { $gt: ISODate("2015-06-05T00:45:00.00 ...

  9. 查看mysql表结构的几种方法

    desc 表名; show columns from 表名; describe 表名; show create table 表名; use information_schemaselect * fro ...

  10. POJ 1611

    菜鸟第一次做这种.想了好一会儿.== 首先还是初始化记忆数组,使得每一个元素的初始根节点是自己. 然后是对输入的数据进行并集.我们拿出每组元素的第一个作为根节点. 每次检测是否已经存在根节点.如果存在 ...