bzoj2178: 圆的面积并
Description
Input
Output
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long double ld;
int n;
const ld pi=acos(-.l),_2pi=pi*;
struct itv{ld l,r;}is[];
bool operator<(itv x,itv y){return x.l<y.l;}
int ip;
ld ans=;
ld maxs(ld&a,ld b){if(a<b)a=b;}
struct cir{
int x,y,r;
void init(){scanf("%d%d%d",&x,&y,&r);}
bool in(cir w){
int a=x-w.x,b=y-w.y;
return sqrt(a*a+b*b)+r-1e-7l<w.r;
}
bool cross(cir w){
int a=x-w.x,b=y-w.y;
return sqrt(a*a+b*b)<r+w.r;
}
ld fix(ld x){
while(x<)x+=_2pi;
while(x>_2pi)x-=_2pi;
return x;
}
void cal(cir w){
ld xd=w.x-x,yd=w.y-y,d=sqrt(xd*xd+yd*yd);
ld a=atan2(yd,xd);
ld b=acos((r*r+d*d-w.r*w.r)/(*r*d));
ld l=fix(a-b),r=fix(a+b);
if(l<r)is[ip++]=(itv){l,r};
else is[ip++]=(itv){,r},is[ip++]=(itv){l,_2pi};
}
inline void g1(ld a){
ans+=(a-sin(a))*r*r;
}
inline void g2(ld L,ld R){
ans+=((x+cos(L)*r)*(y+sin(R)*r)-(x+cos(R)*r)*(y+sin(L)*r));
}
void get(){
if(!ip){
ans+=pi*r*r*;
return;
}
std::sort(is,is+ip);
ld L,R=-,R1;
for(int i=,j=;i<ip;i=j){
R1=R;L=is[i].l;R=is[i].r;
while(j<ip&&is[j].l<=R)maxs(R,is[j++].r);
if(R1!=-)g1(L-R1),g2(R1,L);
}
g1(is[].l+_2pi-R),g2(R,is[].l+_2pi);
}
}cs[];
int main(){
scanf("%d",&n);
for(int i=;i<n;++i)cs[i].init();
for(int i=;i<n;++i){
for(int j=;j<n;++j)if(i!=j&&cs[i].in(cs[j])){
cs[i--]=cs[--n];
break;
}
}
for(int i=;i<n;++i){
ip=;
for(int j=;j<n;++j)if(i!=j&&cs[i].cross(cs[j])){
cs[i].cal(cs[j]);
}
cs[i].get();
}
printf("%.3Lf",ans/.);
return ;
}
bzoj2178: 圆的面积并的更多相关文章
- [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并
[SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并 题目大意: 求\(n(n\le1000)\)个圆的面积并. 思路: 对于一个\( ...
- BZOJ2178: 圆的面积并(格林公式)
题面 传送门 题解 好神仙-- 先给几个定义 平面单连通区域:设\(D\)是平面内一区域,若属于\(D\)内任一简单闭曲线的内部都属于\(D\),则称\(D\)为单连通区域.通俗地说,单连通区域是没有 ...
- BZOJ2178 圆的面积并 计算几何 辛普森积分
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2178.html 题目传送门 - BZOJ2178 题意 给出 $n(n\leq 1000)$ 个圆,求 ...
- BZOJ2178 圆的面积并(simpson积分)
板子题.可以转一下坐标防止被卡.精度和常数实在难以平衡. #include<iostream> #include<cstdio> #include<cmath> # ...
- 【BZOJ2178】圆的面积并(辛普森积分)
[BZOJ2178]圆的面积并(辛普森积分) 题面 BZOJ 权限题 题解 把\(f(x)\)设为\(x\)和所有圆交的线段的并的和. 然后直接上自适应辛普森积分. 我精度死活一个点过不去,不要在意我 ...
- 【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]
[题解]CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178] 传送门: \(\text{CIRU - The area ...
- JAVA求圆的面积
import java.text.DecimalFormat;import java.util.Scanner; public class TheAreaOfCircle { public stati ...
- c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode
#include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...
- 【BZOJ】2178: 圆的面积并
http://www.lydsy.com/JudgeOnline/problem.php?id=2178 题意:给出n<=1000个圆,求这些圆的面积并 #include <cstdio& ...
随机推荐
- hadoop问题锦集(一):mapreduce不能在集群中运行
问题详细: 搭建类hadoop的集群集群环境,查看hadoop dfsadmin -report 也有datanode节点.在master:50070上也有. 然而在eclipse环境上运行mapre ...
- 在centos使用rpm包的方式安装mysql,以及更改root密码
在centos使用rpm包的方式安装mysql,对于centos官方实际推荐使用yum进行安装,下载安装的方式主要用于内网服务器不能连接外网yum源的情况. 下载包 首先根据centos版本在mysq ...
- oc小总结
oc的一些总结 下面几个问题是oc中需要掌握的内容 1.如何掌握一个方法的方法名 2.一个对象调用一个autorelease,什么时候释放 3.字典和数组,集合都有什么特点 4.如何定义一个类 5.类 ...
- Javascript中的函数、this以及原型
关于函数 在Javascript中函数实际上就是一个对象,具有引用类型的特征,所以你可以将函数直接传递给变量,这个变量将表示指向函数“对象"的指针,例如: function test(mes ...
- 3-1 rpm包命名规则
1.RPM包的来源 <1>RPM包在系统光盘中 ---------------------------------------------------------------------- ...
- spark优化之优化数据结构
概序: 要减少内存的消耗,除了使用高效的序列化类库以外,还有一个很重要的事情,就是优化数据结构.从而避免Java语法特性中所导致的额外内存的开销,比如基于指针的Java数据结构,以及包装类型. 有一个 ...
- Mac下的利器们介绍
先说说一些快捷键吧,从windows下过来还不很习惯: ctrl + 开关 关机等提示 ctrl+shift+开关 关闭显示器 cmd+option+v 相当于剪贴 cmd+tab,对于最小化了的窗口 ...
- c程序代码优化的一些方法
我认为一个好的用于科学计算的程序代码应该:算法漂亮精妙,程序简洁易懂,运算快速,节省内存.这里有的地方是矛盾的,比如简洁vs易懂,时间vs空间,找个平衡吧.目前来看时间要比空间宝贵一些.写程序分几步: ...
- rsyslog日志服务的配置文件分析
基于rsyslog日志服务的日志 在不同的LINUX系统,实现的软件略有不同. syslog,rsyslog,syslog-ng,用于实现系统日志的管理. [root@asianux4 ~]# rpm ...
- CSS和JS实现单行、多行文本溢出显示省略号(该js方法有问题不对)
如果实现单行文本的溢出显示省略号同学们应该都知道用text-overflow:ellipsis属性来,当然还需要加宽度width属来兼容部分浏览. 实现方法: overflow: hidden; te ...