bzoj2178: 圆的面积并
Description
Input
Output
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long double ld;
int n;
const ld pi=acos(-.l),_2pi=pi*;
struct itv{ld l,r;}is[];
bool operator<(itv x,itv y){return x.l<y.l;}
int ip;
ld ans=;
ld maxs(ld&a,ld b){if(a<b)a=b;}
struct cir{
int x,y,r;
void init(){scanf("%d%d%d",&x,&y,&r);}
bool in(cir w){
int a=x-w.x,b=y-w.y;
return sqrt(a*a+b*b)+r-1e-7l<w.r;
}
bool cross(cir w){
int a=x-w.x,b=y-w.y;
return sqrt(a*a+b*b)<r+w.r;
}
ld fix(ld x){
while(x<)x+=_2pi;
while(x>_2pi)x-=_2pi;
return x;
}
void cal(cir w){
ld xd=w.x-x,yd=w.y-y,d=sqrt(xd*xd+yd*yd);
ld a=atan2(yd,xd);
ld b=acos((r*r+d*d-w.r*w.r)/(*r*d));
ld l=fix(a-b),r=fix(a+b);
if(l<r)is[ip++]=(itv){l,r};
else is[ip++]=(itv){,r},is[ip++]=(itv){l,_2pi};
}
inline void g1(ld a){
ans+=(a-sin(a))*r*r;
}
inline void g2(ld L,ld R){
ans+=((x+cos(L)*r)*(y+sin(R)*r)-(x+cos(R)*r)*(y+sin(L)*r));
}
void get(){
if(!ip){
ans+=pi*r*r*;
return;
}
std::sort(is,is+ip);
ld L,R=-,R1;
for(int i=,j=;i<ip;i=j){
R1=R;L=is[i].l;R=is[i].r;
while(j<ip&&is[j].l<=R)maxs(R,is[j++].r);
if(R1!=-)g1(L-R1),g2(R1,L);
}
g1(is[].l+_2pi-R),g2(R,is[].l+_2pi);
}
}cs[];
int main(){
scanf("%d",&n);
for(int i=;i<n;++i)cs[i].init();
for(int i=;i<n;++i){
for(int j=;j<n;++j)if(i!=j&&cs[i].in(cs[j])){
cs[i--]=cs[--n];
break;
}
}
for(int i=;i<n;++i){
ip=;
for(int j=;j<n;++j)if(i!=j&&cs[i].cross(cs[j])){
cs[i].cal(cs[j]);
}
cs[i].get();
}
printf("%.3Lf",ans/.);
return ;
}
bzoj2178: 圆的面积并的更多相关文章
- [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并
[SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并 题目大意: 求\(n(n\le1000)\)个圆的面积并. 思路: 对于一个\( ...
- BZOJ2178: 圆的面积并(格林公式)
题面 传送门 题解 好神仙-- 先给几个定义 平面单连通区域:设\(D\)是平面内一区域,若属于\(D\)内任一简单闭曲线的内部都属于\(D\),则称\(D\)为单连通区域.通俗地说,单连通区域是没有 ...
- BZOJ2178 圆的面积并 计算几何 辛普森积分
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2178.html 题目传送门 - BZOJ2178 题意 给出 $n(n\leq 1000)$ 个圆,求 ...
- BZOJ2178 圆的面积并(simpson积分)
板子题.可以转一下坐标防止被卡.精度和常数实在难以平衡. #include<iostream> #include<cstdio> #include<cmath> # ...
- 【BZOJ2178】圆的面积并(辛普森积分)
[BZOJ2178]圆的面积并(辛普森积分) 题面 BZOJ 权限题 题解 把\(f(x)\)设为\(x\)和所有圆交的线段的并的和. 然后直接上自适应辛普森积分. 我精度死活一个点过不去,不要在意我 ...
- 【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]
[题解]CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178] 传送门: \(\text{CIRU - The area ...
- JAVA求圆的面积
import java.text.DecimalFormat;import java.util.Scanner; public class TheAreaOfCircle { public stati ...
- c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode
#include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...
- 【BZOJ】2178: 圆的面积并
http://www.lydsy.com/JudgeOnline/problem.php?id=2178 题意:给出n<=1000个圆,求这些圆的面积并 #include <cstdio& ...
随机推荐
- 安装GD库解决ThinkPHP 验证码Call to undefined function Think\imagecreate()出错
在php中imagecreate函数是一个图形处理函数,主要用于新建一个基于调色板的图像了,然后在这个基础上我们可以创建一些图形数字字符之类的,但这个函数需要GD库支持,如果没有开启GD库使用时会提示 ...
- SecureCRT最佳配色方法+直接修改默认配置方法 - imsoft.cnblogs
SecureCRT默认显示效果是黑白且刺眼的主题,看起来很不舒服.经过一番搜索,总结结果如下,直接设置默认属性,设置一次,不需再改. 效果图: 具体操作方法: Options->Global O ...
- 徹底刪除atom
rm -f ~/.atom rm -f /usr/local/bin/atom rm -f /usr/local/bin/apm rm -f /Applications/Atom.app rm -f ...
- JavaWeb学习记录(八)——servlet获取配置信息
jdbc.properties内容如下: jdbcUrl=jdbc\:mysql\://localhost\:3306/animaluser=rootpass=root servlet获取资源信息代码 ...
- 所学新知——int、char型转string 类型等
1. 利用stringstream类 定义头文件#include<sstream> 通过 int a; char b; sstream ss,ss1; ss<<a; ss1&l ...
- Quailty and Binary Operation
Quailty and Binary Operation 题意 分别给\(N,M(N,M \le 50000)\)两个数组\(A\)和\(B\),满足\(0 \le A_i,B_i \le 50000 ...
- android中的Handler
android的Handler 前言 学习android一段时间了,为了进一步了解android的应用是如何设计开发的,决定详细研究几个开源的android应用.从一些开源应用中吸收点东西,一边进 ...
- 【P1373】奶牛的卧室
看山神的题解写出来的,sro_dydxh_orz 原题:奶牛们有一个习惯,那就是根据自己的编号选择床号.如果一头奶牛编号是a,并且有0..k-1一共k张床,那么她就会选择a mod k号床作为她睡 ...
- Java——日期格式
/* * 日期对象和毫秒值之间的转换. * * 毫秒值--->日期对象: * 1.通过Date对象的构造方法new Date(timeMillis) * 2.还可以通过setTime设 ...
- 两种不同的Context
本文转载于:http://blog.csdn.net/xiaodongvtion/article/details/8443772 这是两种不同的context,也是最常见的两种.第一种中context ...