Logistic regression中regularization失败的解决方法探索(文末附解决后code)
在matlab中做Regularized logistic regression
原理:


我的代码:
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters. % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0;
grad = zeros(size(theta)); % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta h = sigmoid(X*theta);
theta2=[0;theta(2:end)]; J_partial = sum((-y).*log(h)+(y-1).*log(1-h))./m;
J_regularization= (lambda/(2*m)).*sum(theta2.^2);
J = J_partial+J_regularization; grad_partial = sum((h-y).*X)/m;
grad_regularization = lambda.*theta2./m;
grad = grad_partial+grad_regularization; % ============================================================= end
运行结果:






标黄的与下面的预期对比发现不同
尝试删去
.rtcContent { padding: 30px }
.lineNode { font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal }

部分结果符合预期,部分不符合


尝试大佬代码
%Hypotheses
hx = sigmoid(X * theta);
%%The cost without regularization
J_partial = (-y' * log(hx) - (1 - y)' * log(1 - hx)) ./ m;
%%Regularization Cost Added
J_regularization = (lambda/(2*m)) * sum(theta(2:end).^2);
%%Cost when we add regularization
J = J_partial + J_regularization;
%Grad without regularization
grad_partial = (1/m) * (X' * (hx -y));
%%Grad Cost Added
grad_regularization = (lambda/m) .* theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial + grad_regularization;


完全成功!?我不李姐……
观察大佬代码发现,我和大佬的区别在于:
最开始的theta向量和计算J(theta)和grad时候使用sum的数目
故尝试修改和大佬数目一样多的sum
h = sigmoid(X*theta);
theta2=[0;theta(2:end)]; J_partial = (-y).*log(h)+(y-1).*log(1-h)./m;
J_regularization= (lambda/(2*m)).*sum(theta2.^2);
J = J_partial+J_regularization; grad_partial = (h-y).*X/m;
grad_regularization = lambda.*theta2./m;
grad = grad_partial+grad_regularization;
结果:incompatible不兼容

文档对该错误的解释如下

事已至此,只好向大佬更近一步!
h = sigmoid(X*theta);
J_partial = (-y).*log(h)+(y-1).*log(1-h)./m;
J_regularization= (lambda/(2*m)).*sum(theta(2:end).^2);
J = J_partial+J_regularization;
grad_partial = (h-y).*X/m;
grad_regularization = lambda.*theta(2:end)./m;
grad_regularization2=[0;grad_regularization];
grad = grad_partial+grad_regularization2;

为什么还是不兼容?
到底哪里出了问题?
最后,尝试离大佬更近一步,把grad_partial里的(h-y).*X/m变成了(1/m) * (X' * (h -y))
h = sigmoid(X*theta);
J_partial = (1/m).*((-y).*log(h)+(y-1).*log(1-h));
J_regularization= (lambda/(2*m)).*sum(theta(2:end).^2);
J = J_partial+J_regularization;
grad_partial = (1/m) * (X' * (h -y));
grad_regularization = (lambda/m).*theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial+ grad_regularization;


舒服了!
但,等等,上面怎么那么多行,数值还不对?看来不能完全靠大佬,还得自己改!!!
h = sigmoid(X*theta);
J_partial = (1/m).*sum((-y).*log(h)+(y-1).*log(1-h));
J_regularization= (lambda/(2*m)).*sum(theta(2:end).^2);
J = J_partial+J_regularization;
grad_partial = (1/m) * (X' * (h -y));
grad_regularization = (lambda/m).*theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial+ grad_regularization;
最终,得到了满意的答案


以及

总结一下出现的问题
01不兼容,就像上面说明的那样,行列不匹配
(解决方法:查看有无sum、是值还是array,把系数往前放,修改两数相乘的顺序)
02加入grad_regularization后,grad(1,5)的后四项都出现了问题(很神奇地值相等),
一旦去掉又与正确值有小范围差距(缺少grad_regularization导致的)
说明grad_regularization存在问题
而如果一开始就将theta变为第一行元素是0的矩阵,很容易出现不兼容的问题
大佬的代码提示我们特殊情况可以分出来特殊处理,也就是:
在计算J(θ)不使用矩阵,而是用除0外、后面的θ直接产出需要的值
在计算grad时,由于输出也是矩阵,所以可以创建一个含0和其他θ的矩阵
这样既可以避免不兼容,也可以得出正确的结果
最终的部分code如下
h = sigmoid(X*theta);
J_partial = (1/m).*sum((-y).*log(h)+(y-1).*log(1-h));
J_regularization= (lambda/(2*m)).*sum(theta(2:end).^2);
J = J_partial+J_regularization;
grad_partial = (1/m) * (X' * (h -y));
grad_regularization = (lambda/m).*theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial+ grad_regularization;
Logistic regression中regularization失败的解决方法探索(文末附解决后code)的更多相关文章
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
- logistic regression中的cost function选择
一般的线性回归使用的cost function为: 但由于logistic function: 本身非凸函数(convex function), 如果直接使用线性回归的cost function的话, ...
- Windows 共享无线上网 无法启动ICS服务解决方法(WIN7 ICS服务启动后停止)
Windows 共享无线上网 无法启动ICS服务解决方法(WIN7 ICS服务启动后停止) ICS 即Internet Connection Sharing,internet连接共享,可以使局域网上其 ...
- 斯坦福机器学习视频笔记 Week3 逻辑回归与正则化 Logistic Regression and Regularization
我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost fun ...
- Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...
- week3编程作业: Logistic Regression中一些难点的解读
%% ============ Part : Compute Cost and Gradient ============ % In this part of the exercise, you wi ...
- 在IE浏览器中执行OpenFlashChart的reload方法时无法刷新的解决方法
由于项目需求,需要在网页上利用图表展示相关数据的统计信息,采用了OpenFlashChart技术.OpenFlashChart是一款开源的以Flash和Javascript为技术基础的免费图表,用它能 ...
- (蓝牙)网络编程中,使用InputStream read方法读取数据阻塞的解决方法
问题如题,这个问题困扰了我好几天,今天终于解决了,感谢[1]. 首先,我要做的是android手机和电脑进行蓝牙通信,android发一句话,电脑端程序至少就要做到接受到那句话.android端发送信 ...
- blocked because of many connection errors; unblock with 'mysqladmin flush-hosts;MySQL在远程访问时非常慢的解决方法;MySql链接慢的解决方法
一:服务器异常:Host 'xx.xxx.xx.xxx' is blocked because of many connection errors; unblock with 'mysqladmin ...
随机推荐
- java+eclipse安装及配置
一.JDK安装 0x00 下载JDK 首先我们需要下载java开发工具包JDK 下载地址:https://www.oracle.com/technetwork/java/javase/download ...
- CyclicBarrier和CountDownLatch区别
这两天写多线程时,用到了CyclicBarrier,下意识的认为CyclicBarrier和CountDownLatch作用很像,就翻阅资料查了一下,说一下他们的区别吧 CyclicBarrier和C ...
- IDEA使用Docker插件构建镜像
IDEA使用Docker插件构建镜像 记一次坑 第一次插件docker-maven-plugin的 配置文件中没写远程主机的地址 <dockerHost>http://192.168.1 ...
- centos容器安装nginx及运行
进入centos容器: 安装依赖:yum insatll -y wget gcc gcc-c++ make openssl-devel 安装: 到官网复制下载链接:http://nginx.org/d ...
- 用 Java 实现阻塞队列 ?
参考 java 中的阻塞队列的内容吧,直接实现有点烦
- 使用 Spring 通过什么方式访问 Hibernate?
在 Spring 中有两种方式访问 Hibernate:控制反转 Hibernate Template 和 Callback.继承 HibernateDAOSupport 提供一个 AOP 拦截器.
- Mybatis useGeneratedKeys无法返回主键解决
1.项目环境--SpringBoot下的SSM+Maven 2.问题出现位置--Dao层和Mapper文件 错误代码如下图: dao层: mapper文件: 错误代码分析: 使用useGenerate ...
- carsim笔记——道路设置
第一步: 进入道路轨迹设置 道路情况设置举例 第二步:设置道路3D的显示效果 对上面的解释举例说明
- 小程序中webview内嵌h5页面
小程序内嵌h5页面跳转小程序指定页面, 需要引用 JSSDK: <script src="https://res.wx.qq.com/open/js/jweixin-1.3.2 ...
- 华为交换机Stelnet ssh/rsa验证模式下16进制公钥生成方法
1.生成秘钥 需要在你自己电脑上生成 执行下面命令,默认生成位置是~/.ssh ssh-keygen -t rsa -b 1024 -f yourkeyname -C "备注" 参 ...