package com.grady

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession object SparkReadHbase { def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN) // val sparkConf = new SparkConf().setAppName("SparkReadHbase")
// val sc = new SparkContext(sparkConf)
// 也可以通过sparkSession 来后去SparkContext
val spark = SparkSession.builder().appName("SparkReadHbase").getOrCreate()
val sc = spark.sparkContext val tablename = "jiang:student" val hbaseConf = HBaseConfiguration.create()
hbaseConf.set("hbase.zookeeper.quorum","10.82.232.64")
hbaseConf.set("hbase.zookeeper.property.clientPort", "2181")
hbaseConf.set("zookeeper.znode.parent", "/hbase")
//注意: 这里是INPUT_TABLE, 写是OUTPUT_TABLE
hbaseConf.set(TableInputFormat.INPUT_TABLE, tablename) val hbaseRDD = sc.newAPIHadoopRDD(hbaseConf,
//TableInputFormat 是 org.apache.hadoop.hbase.mapreduce 包下的
classOf[TableInputFormat],
classOf[ImmutableBytesWritable],
classOf[Result]) hbaseRDD.foreach{
case (_, result) =>
//获取行键
val key = Bytes.toString(result.getRow)
//通过列族和列名获取列
val name = Bytes.toString(result.getValue("cf".getBytes, "name".getBytes))
val age = Bytes.toString(result.getValue("cf".getBytes, "age".getBytes))
println("Row key:"+key+"\tcf1.Name:"+name+"\tcf1.Age:"+age)
}
spark.stop()
} }

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<parent>
<artifactId>spark-practise</artifactId>
<groupId>org.example</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>usehive1</artifactId> <repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories> <pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories> <dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs</groupId>
<artifactId>specs</artifactId>
<version>1.2.5</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.hbase.connectors.spark/hbase-spark -->
<dependency>
<groupId>org.apache.hbase.connectors.spark</groupId>
<artifactId>hbase-spark</artifactId>
</dependency>
</dependencies> <build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.8</arg>
</args>
</configuration>
</plugin>
</plugins>
</build>
</project>

执行:spark-submit --master local[2] --num-executors 10 --class com.grady.SparkReadHbase /app/data/appdeploy/usehive1-1.0-SNAPSHOT.jar

日志:

Row key:1       cf1.Name:jack   cf1.Age:15
Row key:2 cf1.Name:Lily cf1.Age:16
Row key:3 cf1.Name:mike cf1.Age:16

Spark 读 Hbase的更多相关文章

  1. Spark读HBase写MySQL

    1 Spark读HBase Spark读HBase黑名单数据,过滤出当日新增userid,并与mysql黑名单表内userid去重后,写入mysql. def main(args: Array[Str ...

  2. IDEA中Spark读Hbase中的数据

    import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.io.ImmutableBytesWr ...

  3. IDEA中 Spark 读Hbase 报错处理:

    SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] // :: ERROR RecoverableZooKeepe ...

  4. Spark读Hbase优化 --手动划分region提高并行数

    一. Hbase的region 我们先简单介绍下Hbase的架构和Hbase的region: 从物理集群的角度看,Hbase集群中,由一个Hmaster管理多个HRegionServer,其中每个HR ...

  5. spark sql读hbase

    项目背景 spark sql读hbase据说官网如今在写,但还没稳定,所以我基于hbase-rdd这个项目进行了一个封装,当中会区分是否为2进制,假设是就在配置文件里指定为#b,如long#b,还实用 ...

  6. spark读HFile对hbase表数据进行分析

    要求:计算hasgj表,计算每天新增mac数量. 因为spark直接扫描hbase表,对hbase集群访问量太大,给集群造成压力,这里考虑用spark读取HFile进行数据分析. 1.建立hasgj表 ...

  7. [Spark] 04 - HBase

    BHase基本知识 基本概念 自我介绍 HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”. ...

  8. MapReduce和Spark写入Hbase多表总结

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduc ...

  9. spark 操作hbase

    HBase经过七年发展,终于在今年2月底,发布了 1.0.0 版本.这个版本提供了一些让人激动的功能,并且,在不牺牲稳定性的前提下,引入了新的API.虽然 1.0.0 兼容旧版本的 API,不过还是应 ...

随机推荐

  1. Linux YUM yum 命令详解

    Yum命令 常用yum命令列表 command is one of: * install package1 [package2] [...] * update [package1] [package2 ...

  2. Python 数据科学手册:读书笔记概论

    为防止遗忘,在空闲时间将读书的笔记开始按照章节进行概括总结(2022.1.1): 第二章:NumPy 入门 第三章:Pandas 数据处理 第四章:Matplotlib 数据可视化 第五章:机器学习 ...

  3. JDBCToolsV2:利用ThreadLocal保证当前线程操作同一个数据库连接对象。

    JDBCToolsV2:     利用ThreadLocal保证当前线程操作同一个数据库连接对象. package com.dgd.test; import com.alibaba.druid.poo ...

  4. Deep Learning-深度学习(二)

    深度学习入门 1.随机梯度下降 在之前的学习过程当中,对于损失函数的最为重要的参数的梯度的更新是基于数据集中的所有数据,每一个数据都会进行到计算过程当中去,在本案例中,因为波士顿房价预测这个案例所涉及 ...

  5. 【最全】CSS盒子(div)水平垂直居中居然还有这种方式

    最全的CSS盒子(div)水平垂直居中布局,对CSS 布局掌握程度决定你在 Web 开发中的开发页面速度. 相对于屏幕 方法一:利用定位 <div class="box"&g ...

  6. C# 实例解释面向对象编程中的接口隔离原则

    在面向对象编程中,SOLID 是五个设计原则的首字母缩写,旨在使软件设计更易于理解.灵活和可维护.这些原则是由美国软件工程师和讲师罗伯特·C·马丁(Robert Cecil Martin)提出的许多原 ...

  7. 前端学做 PPT

    前端学做 PPT 公司做技术分享.年终总结都需要用到ppt. 要快速.省事的做出高质量的 ppt,一方面需要熟练使用制作 ppt 的工具,另一方面得知道用工具做成什么样子才是好作品.前者比较简单,后者 ...

  8. 001 Security概述

    1.Spring Security概述 Spring Security是用于解决认证与授权的框架 SpringSecurity默认要求所有的请求都是必须先登录才允许的访问 BCrypt加密算法 BCr ...

  9. nginx概述及配置

    Nginx是什么? Nginx是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器.因它的稳定性.丰富的功能集.示例配置文件和低系统资源的消耗而闻名.20 ...

  10. 01-vscode自定义配色方案 插件基础上

    01-下载相关主题插件 02- 点击设置按钮 复制id 03-进入插件文件 C:\Users\Administrator\.vscode\extensions 04-复制刚才的id 05-themes ...