过拟合和欠拟合

简单来说过拟合就是模型训练集精度高,测试集训练精度低;欠拟合则是模型训练集和测试集训练精度都低。

官方文档地址为 https://tensorflow.google.cn/tutorials/keras/overfit_and_underfit

过拟合和欠拟合

以IMDB dataset为例,对于过拟合和欠拟合,不同模型的测试集和验证集损失函数图如下:

baseline模型结构为:10000-16-16-1

smaller_model模型结构为:10000-4-4-1

bigger_model模型结构为:10000-512-512-1

造成过拟合的原因通常是参数过多或者数据较少,欠拟合往往是训练次数不够。

解决方法

正则化

正则化简单来说就是稀疏化参数,使得模型参数较少。类似于降维。

正则化参考: https://blog.csdn.net/jinping_shi/article/details/52433975

tf.keras通常在损失函数后添加正则项,l1正则化和l2正则化。

l2_model = keras.models.Sequential([
keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),#权重l2正则化
activation=tf.nn.relu, input_shape=(10000,)),
keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),#权重l2正则化
activation=tf.nn.relu),
keras.layers.Dense(1, activation=tf.nn.sigmoid)
]) l2_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy']) l2_model_history = l2_model.fit(train_data, train_labels,
epochs=20,
batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)

dropout

Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,使得比例为rate的神经元不被训练。

具体见: https://yq.aliyun.com/articles/68901

dpt_model = keras.models.Sequential([
keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(10000,)),
keras.layers.Dropout(0.3), #百分之30的神经元失效
keras.layers.Dense(16, activation=tf.nn.relu),
keras.layers.Dropout(0.7), #百分之70的神经元失效
keras.layers.Dense(1, activation=tf.nn.sigmoid)
]) dpt_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy','binary_crossentropy']) dpt_model_history = dpt_model.fit(train_data, train_labels,
epochs=20,
batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)

总结

常用防止过拟合的方法有:

  1. 增加数据量
  2. 减少网络结构参数
  3. 正则化
  4. dropout
  5. 数据扩增data-augmentation
  6. 批标准化

[深度学习] tf.keras入门4-过拟合和欠拟合的更多相关文章

  1. [深度学习] tf.keras入门3-回归

    目录 波士顿房价数据集 数据集 数据归一化 模型训练和预测 模型建立和训练 模型预测 总结 回归主要基于波士顿房价数据库进行建模,官方文档地址为:https://tensorflow.google.c ...

  2. [深度学习] tf.keras入门5-模型保存和载入

    目录 设置 基于checkpoints的模型保存 通过ModelCheckpoint模块来自动保存数据 手动保存权重 整个模型保存 总体代码 模型可以在训练中或者训练完成后保存.具体文档参考:http ...

  3. [深度学习] tf.keras入门2-分类

    目录 Fashion MNIST数据库 分类模型的建立 模型预测 总体代码 主要介绍基于tf.keras的Fashion MNIST数据库分类, 官方文档地址为:https://tensorflow. ...

  4. [深度学习] tf.keras入门1-基本函数介绍

    目录 构建一个简单的模型 序贯(Sequential)模型 网络层的构造 模型训练和参数评价 模型训练 模型的训练 tf.data的数据集 模型评估和预测 基本模型的建立 网络层模型 模型子类函数构建 ...

  5. 深度学习:Keras入门(一)之基础篇

    1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深度学习框架. Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结 ...

  6. 深度学习:Keras入门(一)之基础篇【转】

    本文转载自:http://www.cnblogs.com/lc1217/p/7132364.html 1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorfl ...

  7. 深度学习:Keras入门(一)之基础篇(转)

    转自http://www.cnblogs.com/lc1217/p/7132364.html 1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深 ...

  8. 深度学习:Keras入门(二)之卷积神经网络(CNN)

    说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式 ...

  9. 深度学习:Keras入门(二)之卷积神经网络(CNN)【转】

    本文转载自:https://www.cnblogs.com/lc1217/p/7324935.html 说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么 ...

随机推荐

  1. 洛谷P1725 琪露诺 (单调队列/堆优化DP)

    显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...

  2. Vue3 SFC 和 TSX 方式调用子组件中的函数

    在开发中会遇到这样的需求:获取子组件的引用,并调用子组件中定义的方法.如封装了一个表单组件,在父组件中需要调用这个表单组件的引用,并调用这个表单组件的校验表单函数或重置表单函数.要实现这个功能,首先要 ...

  3. 快读《ASP.NET Core技术内幕与项目实战》WebApi3.1:WebApi最佳实践

    本节内容,涉及到6.1-6.6(P155-182),以WebApi说明为主.主要NuGet包:无 一.创建WebApi的最佳实践,综合了RPC和Restful两种风格的特点 1 //定义Person类 ...

  4. 沁恒CH32V003(二): Ubuntu20.04 MRS和Makefile开发环境配置

    目录 沁恒CH32V003(一): CH32V003F4P6开发板上手报告和Win10环境配置 沁恒CH32V003(二): Ubuntu20.04 MRS和Makefile开发环境配置 硬件准备 沁 ...

  5. Azure DevOps Server 入门实践与安装部署

    一,引言 最近一段时间,公司希望在自己的服务器上安装本地版的 Azure DevOps Service(Azure DevOps Server),用于项目内的测试,学习.本着学习的目的,我也就开始学习 ...

  6. salesforce零基础学习(一百二十)快去迁移你的代码中的 Alert / Confirm 以及 Prompt吧

    本篇参考: https://developer.salesforce.com/blogs/2022/01/preparing-your-components-for-the-removal-of-al ...

  7. 使用canvas 根据角度画圆弧

    最近收到一个需求,根据角度在平面上画出对应的区域,实际就是 以固定的原点,根据起始角度和结束角度和半径,画出他的区域. 写了一小段,试试 export class Draw {   construct ...

  8. Containerd 如何配置 Proxy?

    前言 在某些 air gap 场景中,往往需要离线或使用代理 (Proxy), 例如: 需要通过 Proxy pull 容器镜像: Docker Hub: docker.io Quay: quay.i ...

  9. 硬核!Apache Hudi Schema演变深度分析与应用

    1.场景需求 在医疗场景下,涉及到的业务库有几十个,可能有上万张表要做实时入湖,其中还有某些库的表结构修改操作是通过业务人员在网页手工实现,自由度较高,导致整体上存在非常多的新增列,删除列,改列名的情 ...

  10. 【Devexpress】Gridcontrol列标题换行

    gridView1.OptionsView.AllowHtmlDrawHeaders = true; gridView1.ColumnPanelRowHeight = 35; GridColumn g ...