流行学习算法

  • 是一类用于可视化的算法,它允许进行更复杂的映射,通常也可以给出更好的可视化。
  • t-SNE算法是其中一种。

PCA是用于变换数据的首选方法,也可以进行可视化,但它的性质(先旋转然后减少方向)限制了有效性。因此,我们可以使用流形学习算法进行数据可视化。

1、什么是t-SNE

t-SNE算法

  • 主要思想:找到数据的一种二维表示,尽可能保持数据点之间的距离(高内聚,低耦合)。

    • 这种方法不知道类别标签,是完全无监督的。

    • 它只能变换用于训练的数据,不支持新数据(没有transform方法),即不能用于测试集。

    • 具有调节参数(perplexity、early_exaggeration),通常默认参数的效果就很好。

2、将t-SNE应用于手写数字数据集

(1)了解一下digits数据集

  from sklearn.datasets import load_digits
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
import numpy as np digits = load_digits() fig,axes = plt.subplots(2,5,figsize=(10,5),subplot_kw={'xticks':(),'yticks':()}) #展示前10张图片
for ax,img in zip(axes.ravel(),digits.images):
ax.imshow(img)

  print(digits.images.shape)
print(digits.data.shape)
print(digits.target_names.shape) 输出:
(1797, 8, 8)
(1797, 64)
(10,)

在这个数据集中,包含1797张8*8灰度的图像。每个数据点都是一个数字,共有10种类别(数字0~9)

(2)使用PAC作为一个对比

  • 使用PCA将数据集将至二维,并将其可视化。对pca变换后的数据的前两个主成分作图

    pca = PCA(n_components=2)
    pca.fit(digits.data) #t-SNE只能用于训练集 #将数据样本用pca进行转换
    digits_pca = pca.transform(digits.data) plt.figure(figsize=(10,10))
    plt.xlim(np.min(digits_pca[:,0]),np.max(digits_pca[:,0]))
    plt.ylim(np.min(digits_pca[:,1]),np.max(digits_pca[:,1])) #将数据点绘制成文本
    for i in range(len(digits.data)):
    plt.text(digits_pca[i,0],digits_pca[i,1],str(digits.target[i])) plt.xlabel("First Principal component")
    plt.ylabel("Second Principal cpmponent")

  • 用pca可以将数据digits.data降到2维,没分别利用主成分1和主成分2,将数据点可视化至平面(只有两个特征才可作图到二维平面,便于观察)

  • 利用pca前两个主成分可以把数字0,6,4相对较好地分开,但仍有重叠,其他大部分数字大量重叠。

(3)使用t-SNE

  from sklearn.manifold import TSNE

  tsne = TSNE(random_state=42)

  digits_tsne = tsne.fit_transform(digits.data)

  plt.figure(figsize=(10,10))
plt.xlim(np.min(digits_tsne[:,0]),np.max(digits_tsne[:,0])+1)
plt.ylim(np.min(digits_tsne[:,1]),np.max(digits_tsne[:,1])+1) #将数据点绘制成文本
for i in range(len(digits.data)):
plt.text(digits_tsne[i,0],digits_tsne[i,1],str(digits.target[i])) plt.xlabel("t-SNE feature 0")
plt.ylabel("t-SNE feature 1")

  • 可以发现t-SNEde结果很棒,所有的类别都被明确地分开,形成密集的组

  • 找到数据的一种二维表示,仅根据原始空间中数据点之间的靠近程度就能将各个类别明确分开

(4)关于matplotlib.pylot.text

在本次实验代码中,用到了plt.text()方法将降维后的数据在二维平面上用文本画出。

ps:

利用散点图也能可视化我们上述的二维数据,但是不直观,因为类别太多了。

用t-SNE进行流形学习(digits数据集)的更多相关文章

  1. Scikit-Learn模块学习笔记——数据集模块datasets

    scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类: datasets.load_*():获取小规模数据集.数据包含在 datasets 里 datasets.fe ...

  2. 流形学习之等距特征映射(Isomap)

    感觉是有很久没有回到博客园,发现自己辛苦写的博客都被别人不加转载的复制粘贴过去真的心塞,不过乐观如我,说明做了一点点东西,不至于太蠢,能帮人最好.回校做毕设,专心研究多流形学习方法,生出了考研的决心. ...

  3. Manifold learning 流形学习

    Machine Learning 虽然名字里带了 Learning 一个词,让人乍一看觉得和 Intelligence 相比不过是换了个说法而已,然而事实上这里的 Learning 的意义要朴素得多. ...

  4. Python数据科学手册-机器学习: 流形学习

    PCA对非线性的数据集处理效果不太好. 另一种方法 流形学习 manifold learning 是一种无监督评估器,试图将一个低维度流形嵌入到一个高纬度 空间来描述数据集 . 类似 一张纸 (二维) ...

  5. 流形学习(manifold learning)的一些综述

    流形学习(manifold learning)的一些综述 讨论与进展 issue 26 https://github.com/memect/hao/issues/26 Introduction htt ...

  6. 机器学习算法总结(十二)——流形学习(Manifold Learning)

    1.什么是流形 流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的.由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示 ...

  7. 流形学习(manifold learning)综述

    原文地址:https://blog.csdn.net/dllian/article/details/7472916 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低 ...

  8. 流形学习 (Manifold Learning)

    流形学习 (manifold learning) zz from prfans............................... dodo:流形学习 (manifold learning) ...

  9. ML:流形学习

    很多原理性的东西需要有基础性的理解,还是篇幅过少,所以讲解的不是特别的清晰. 原文链接:http://blog.sciencenet.cn/blog-722391-583413.html 流形(man ...

随机推荐

  1. canvas离屏、旋转效果实践——旋转的雪花

    效果展示理论基础--"常见的canvas优化--模糊问题.旋转效果" 用离屏canvas画基础部分 1.封装画线函数 function drawLine(ctx,x1,y1,x2, ...

  2. python-模拟页面调度LRU算法

    [题目描述]所谓LRU算法,是指在发生缺页并且没有空闲主存块时,把最近最少使用的页面换出主存块,腾出地方来调入新页面. 问题描述:一进程获得n个主存块的使用权,对于给定的进程访问页面次序,问当采用LR ...

  3. 【Android开发】Android6.0请求权限方式

    记录一下最普通的动态请求权限的方法: private int requestCode == 123; //判断当前系统的版本 if(Build.VERSION.SDK_INT >= 23){ i ...

  4. vue—子组件修改父组件的值

    如何在子组件中修改父组件的值第一步:首先得保证父组件中有值吧这是userManage.vue 1 data(){ 2 return{ 3 dialogCreate:'false' 4 } 5 } 第二 ...

  5. scss使用方法以及相关内容

    我们平时都称之为 Sass,其实可分成sass和scss, 其中Sass 是以严格的缩进式语法规则来书写,不带大括号({})和分号(;),以".sass"后缀为扩展名:而 SCSS ...

  6. Ubuntu安装开发者平台Backstage

    Ubuntu安装开发者平台Backstage 什么是Backstage? Backstage是一个构建开发者门户的开源平台.通过支持一个集中的软件分类,Backstage可以保存并发布你的微服务和基础 ...

  7. 搭建Vue小页面

    学习链接:https://blog.csdn.net/zhenzuo_x/article/details/81013475 环境搭建: 浏览器:Chrome IDE:VS Code或者WebStorm ...

  8. numpy教程03---ndarray的运算

    欢迎关注公众号[Python开发实战], 获取更多内容! 工具-numpy numpy是使用Python进行数据科学的基础库.numpy以一个强大的N维数组对象为中心,它还包含有用的线性代数,傅里叶变 ...

  9. python---快速排序的实现

    def quick_sort(alist, start, end): """快速排序""" # 递归退出 if start >= en ...

  10. Spring Boot-Profile

    文章目录 前言 一.Profile是什么? 二.使用步骤 1.多Profile文件 2.使用yml方式 3.激活方式 总结 前言 不同的环境解释:比如我们开发人员使用开发环境,项目发布时使用生产环境, ...