流行学习算法

  • 是一类用于可视化的算法,它允许进行更复杂的映射,通常也可以给出更好的可视化。
  • t-SNE算法是其中一种。

PCA是用于变换数据的首选方法,也可以进行可视化,但它的性质(先旋转然后减少方向)限制了有效性。因此,我们可以使用流形学习算法进行数据可视化。

1、什么是t-SNE

t-SNE算法

  • 主要思想:找到数据的一种二维表示,尽可能保持数据点之间的距离(高内聚,低耦合)。

    • 这种方法不知道类别标签,是完全无监督的。

    • 它只能变换用于训练的数据,不支持新数据(没有transform方法),即不能用于测试集。

    • 具有调节参数(perplexity、early_exaggeration),通常默认参数的效果就很好。

2、将t-SNE应用于手写数字数据集

(1)了解一下digits数据集

  from sklearn.datasets import load_digits
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
import numpy as np digits = load_digits() fig,axes = plt.subplots(2,5,figsize=(10,5),subplot_kw={'xticks':(),'yticks':()}) #展示前10张图片
for ax,img in zip(axes.ravel(),digits.images):
ax.imshow(img)

  print(digits.images.shape)
print(digits.data.shape)
print(digits.target_names.shape) 输出:
(1797, 8, 8)
(1797, 64)
(10,)

在这个数据集中,包含1797张8*8灰度的图像。每个数据点都是一个数字,共有10种类别(数字0~9)

(2)使用PAC作为一个对比

  • 使用PCA将数据集将至二维,并将其可视化。对pca变换后的数据的前两个主成分作图

    pca = PCA(n_components=2)
    pca.fit(digits.data) #t-SNE只能用于训练集 #将数据样本用pca进行转换
    digits_pca = pca.transform(digits.data) plt.figure(figsize=(10,10))
    plt.xlim(np.min(digits_pca[:,0]),np.max(digits_pca[:,0]))
    plt.ylim(np.min(digits_pca[:,1]),np.max(digits_pca[:,1])) #将数据点绘制成文本
    for i in range(len(digits.data)):
    plt.text(digits_pca[i,0],digits_pca[i,1],str(digits.target[i])) plt.xlabel("First Principal component")
    plt.ylabel("Second Principal cpmponent")

  • 用pca可以将数据digits.data降到2维,没分别利用主成分1和主成分2,将数据点可视化至平面(只有两个特征才可作图到二维平面,便于观察)

  • 利用pca前两个主成分可以把数字0,6,4相对较好地分开,但仍有重叠,其他大部分数字大量重叠。

(3)使用t-SNE

  from sklearn.manifold import TSNE

  tsne = TSNE(random_state=42)

  digits_tsne = tsne.fit_transform(digits.data)

  plt.figure(figsize=(10,10))
plt.xlim(np.min(digits_tsne[:,0]),np.max(digits_tsne[:,0])+1)
plt.ylim(np.min(digits_tsne[:,1]),np.max(digits_tsne[:,1])+1) #将数据点绘制成文本
for i in range(len(digits.data)):
plt.text(digits_tsne[i,0],digits_tsne[i,1],str(digits.target[i])) plt.xlabel("t-SNE feature 0")
plt.ylabel("t-SNE feature 1")

  • 可以发现t-SNEde结果很棒,所有的类别都被明确地分开,形成密集的组

  • 找到数据的一种二维表示,仅根据原始空间中数据点之间的靠近程度就能将各个类别明确分开

(4)关于matplotlib.pylot.text

在本次实验代码中,用到了plt.text()方法将降维后的数据在二维平面上用文本画出。

ps:

利用散点图也能可视化我们上述的二维数据,但是不直观,因为类别太多了。

用t-SNE进行流形学习(digits数据集)的更多相关文章

  1. Scikit-Learn模块学习笔记——数据集模块datasets

    scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类: datasets.load_*():获取小规模数据集.数据包含在 datasets 里 datasets.fe ...

  2. 流形学习之等距特征映射(Isomap)

    感觉是有很久没有回到博客园,发现自己辛苦写的博客都被别人不加转载的复制粘贴过去真的心塞,不过乐观如我,说明做了一点点东西,不至于太蠢,能帮人最好.回校做毕设,专心研究多流形学习方法,生出了考研的决心. ...

  3. Manifold learning 流形学习

    Machine Learning 虽然名字里带了 Learning 一个词,让人乍一看觉得和 Intelligence 相比不过是换了个说法而已,然而事实上这里的 Learning 的意义要朴素得多. ...

  4. Python数据科学手册-机器学习: 流形学习

    PCA对非线性的数据集处理效果不太好. 另一种方法 流形学习 manifold learning 是一种无监督评估器,试图将一个低维度流形嵌入到一个高纬度 空间来描述数据集 . 类似 一张纸 (二维) ...

  5. 流形学习(manifold learning)的一些综述

    流形学习(manifold learning)的一些综述 讨论与进展 issue 26 https://github.com/memect/hao/issues/26 Introduction htt ...

  6. 机器学习算法总结(十二)——流形学习(Manifold Learning)

    1.什么是流形 流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的.由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示 ...

  7. 流形学习(manifold learning)综述

    原文地址:https://blog.csdn.net/dllian/article/details/7472916 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低 ...

  8. 流形学习 (Manifold Learning)

    流形学习 (manifold learning) zz from prfans............................... dodo:流形学习 (manifold learning) ...

  9. ML:流形学习

    很多原理性的东西需要有基础性的理解,还是篇幅过少,所以讲解的不是特别的清晰. 原文链接:http://blog.sciencenet.cn/blog-722391-583413.html 流形(man ...

随机推荐

  1. 使用Nginx做反向代理的配置

    安装Nginx服务之后 修改Nginx配置文件 如下server字段中主要是配置listen监听8080 端口,然后静态文件袋里到8001  后端端口代理到8000 server { listen 8 ...

  2. Docker的简介

    前言 Docker 是 PaaS 提供商 dotCloud 开源的一个基于 LXC 的高级容器引擎,源代码托管在 Github 上, 基于go语言并遵从Apache2.0协议开源. 何为Docker? ...

  3. docker基础_Dockerfile

    Dockerfile []: https://docs.docker.com/language/python/build-images/ "docker官方文档" 以python为 ...

  4. Selenium3自动化测试【28】单选框、复选框、下拉选择框

    Html页面中的单选按钮.复选框.下拉框均可通过WebDriver实现操做.本节结合案例一起来看看WebDriver如何操做这些控件. 同步视频知识与系列知识内容,可关注:[公众号]:柒哥测试:[WX ...

  5. 数据建模软件Chiner,颜值与实用性并存

    目录 一.chiner介绍 二.值得关注的功能点 2.1. 兼容各种格式的数据建模文件 2.2. 支持多数据库.代码生成 2.3. 支持逻辑视图与物理视图设计 2.4. 自动生成数据库文档 三.总结 ...

  6. CUDA02 - 访存优化和Unified Memory

    CUDA02 - 的内存调度与优化 前面一篇(传送门)简单介绍了CUDA的底层架构和一些线程调度方面的问题,但这只是整个CUDA的第一步,下一个问题在于数据的访存:包括数据以何种形式在CPU/GPU之 ...

  7. git详情、git工作流程、常用命令、忽略文件、分支操作、gitee远程仓库使用

    今日内容概要 git详情 git工作流程 git常用命令 过滤文件 分支操作 git远程仓库使用 可参照:https://www.cnblogs.com/liuqingzheng/p/15328319 ...

  8. linux脚本执行jar包运行

    以下为linux下运行jar包的脚本(只需替换jar包名称): #!/bin/bash #这里可替换为你自己的执行程序,其他代码无需更改 APP_NAME=ruoyi-admin.jar cd `di ...

  9. ABP应用开发(Step by Step)-上篇

    本文主要通过逐步构建一个CRUD示例程序来介绍 ABP 框架的基础知识.它涉及到应用开发的多个方面.在本章结束时,您将了解ABP 框架的基本开发方式.建议入门人员学习,老手不要浪费您宝贵时间.  创建 ...

  10. MySQL性能优化 - 别再只会说加索引了

    MySQL性能优化 MySQL性能优化我们可以从以下四个维度考虑:硬件升级.系统配置.表结构设计.SQL语句和索引. 从成本上来说:硬件升级>系统配置>表结构设计>SQL语句及索引, ...