dfs-1756:八皇后及1700:八皇后问题
总时间限制:
1000ms
内存限制:
65536kB
描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入
2
1
92
样例输出
15863724
84136275
参考代码:
#include<bits/stdc++.h>
using namespace std;
int t,a[10],b[10],c[20],d[20],f[100],n,m=0;
void print()
{
int i,j;
t++;
for(i=1;i<=m;i++)
{
if(t==f[i])
{
for(j=1;j<=8;j++)//枚举列号
{
cout<<a[j];
}
cout<<endl;
}
}
}
void dfs(int i)
{
int j;
if(i>8)
print();
else
for(j=1;j<=8;j++)
{
if(b[j]==0&&c[i+j]==0&&d[i-j+7]==0)//如果可以放
{
a[i]=j;
b[j]=1,c[i+j]=1,d[i-j+7]=1;//宣布占领
dfs(i+1);//进一步递归
b[j]=0,c[i+j]=0,d[i-j+7]=0;//回溯
}
}
}
int main()
{
cin>>n;
while(n--)
cin>>f[++m];
dfs(1);
}
总时间限制:
10000ms
内存限制:
65536kB
描述
在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方。
输入
无输入。
输出
按给定顺序和格式输出所有八皇后问题的解(见Sample Output)。
样例输入
样例输出
No. 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No. 2
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No. 3
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No. 4
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No. 5
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No. 6
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No. 7
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No. 8
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No. 9
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
...以下省略
提示
此题可使用函数递归调用的方法求解。
来源
计算概论05
参考代码:
#include<bits/stdc++.h>
using namespace std;
int t,a[10],b[10],c[20],d[20];
void print()
{
int i,j;
t++;
cout<<"No. "<<t<<endl;//输出框架
for(i=1;i<=8;i++)
{
for(j=1;j<=8;j++)
{
if(a[j]==i)//如果要输出皇后
cout<<"1 ";
else
cout<<"0 ";
}
cout<<endl;
}
}
void dfs(int i)
{
int j;
if(i>8)//如果所有皇后都已放置,则输出
print();
else
for(j=1;j<=8;j++)
if(b[j]==0&&c[i+j]==0&&d[i-j+7]==0)
{
a[i]=j;//计算占领位置
b[j]=1,c[i+j]=1,d[i-j+7]=1;
dfs(i+1);
b[j]=0,c[i+j]=0,d[i-j+7]=0;
}
}
int main()
{
dfs(1);
}
dfs-1756:八皇后及1700:八皇后问题的更多相关文章
- n皇后问题与2n皇后问题
n皇后问题 问题描述: 如何能够在 n×n 的棋盘上放置n个皇后,使得任何一个皇后都无法直接吃掉其他的皇后 (任两个皇后都不能处于同一条横行.纵行或斜线上) 结题思路: 可采用深度优先算法,将棋盘看成 ...
- 蓝桥杯试题 基础练习 2n皇后问题以及n皇后问题
在学习2n皇后之前,我们应该认识一下n皇后问题: 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上.你的任务是,对于 ...
- leetcode 51. N皇后 及 52.N皇后 II
51. N皇后 问题描述 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后 ...
- 八行代码解决八皇后问题(c++)
说的有点夸装,实际上并不只是巴航代码,加上前面的变量声明之类的一共有40多行的样子吧,好像是在知乎上看到的,现在有时间再把它写下来: 其中用到了一些c++11特性,例如lambda 以及给予范围的 f ...
- [HDU 2553]--N皇后问题(回溯)/N皇后问题的分析
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2553 N皇后问题 Time Limit: 2000/1000 MS (Java/Others) ...
- 九度OJ 1254:N皇后问题 (N皇后问题、递归、回溯)
时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:765 解决:218 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一 ...
- 搜索6--noi1700:八皇后问题
搜索6--noi1700:八皇后问题 一.心得 二.题目 1756:八皇后 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 会下国际象棋的人都很清楚:皇后可以 ...
- noi 1700 + 1756 八皇后问题 x
1700:八皇后问题 总时间限制: 10000ms 内存限制: 65536kB 描述 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方. 输入 无输入. 输出 按给定顺序和格式输出 ...
- 洛谷 P1219 八皇后【经典DFS,温习搜索】
P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...
随机推荐
- 【openstack】cloudkitty组件,入门级安装(快速)
@ 目录 前言 架构 安装 配置 启动 检索并安装 CloudKitty 的仪表板 前言 什么是CloudKitty? CloudKitty是OpenStack等的评级即服务项目.该项目旨在成为云的退 ...
- .NET混合开发解决方案8 WinForm程序中通过设置固定版本运行时的BrowserExecutableFolder属性集成WebView2控件
系列目录 [已更新最新开发文章,点击查看详细] 在我的博客<.NET混合开发解决方案7 WinForm程序中通过NuGet管理器引用集成WebView2控件>中介绍了WinForm ...
- 【面试普通人VS高手系列】讲一下wait和notify这个为什么要在synchronized代码块中?
一个工作七年的小伙伴,竟然不知道"wait"和"notify"为什么要在Synchronized代码块里面. 好吧,如果屏幕前的你也不知道,请在评论区打上&qu ...
- 2┃音视频直播系统之浏览器中通过 WebRTC 拍照片加滤镜并保存
一.拍照原理 好多人小时候应该都学过,在几张空白的纸上画同一个物体,并让物体之间稍有一些变化,然后连续快速地翻动这几张纸,它就形成了一个小动画,音视频播放器就是利用这样的原理来播放音视频文件的 播放器 ...
- 【算法】基数排序(Radix Sort)(十)
基数排序(Radix Sort) 基数排序是按照低位先排序,然后收集:再按照高位排序,然后再收集:依次类推,直到最高位.有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序.最后的次序就 ...
- Python模块Ⅰ
Python模块Ⅰ part1 模块的定义/取别名 自定义模块 什么是模块:模块的本质就是.py文件,封装语句的最小单位 模块中出现的变量,for循环,if结构,函数定义...称为模块成员 模块的运行 ...
- 第06组Alpha冲刺(6/6)
目录 1.1 基本情况 1.2 冲刺概况汇报 1.郝雷明 2.曹兰英 3. 方梓涵 4.曾丽莉 5.鲍凌函 6.杜筱 7.黄少丹 8.詹鑫冰 9.董翔云 10.吴沅静 1.3 冲刺成果展示 1.1 基 ...
- PostgreSQL 的窗口函数 OVER, WINDOW, PARTITION BY, RANGE
最近在数据处理中用到了窗函数, 把使用方法记录一下, 暂时只有分组排序和滑动时间窗口的例子, 以后再逐步添加 场景 在SQL查询时, 会遇到有两类需要分组统计的场景, 在之前的SQL语法中是不方便实现 ...
- Python Selenium库
Selenium库 自动化测试工具,支持多种游览器 爬虫中主要用来解决JavaScript渲染的问题 安装Selenium pip3 install selenium 安装游览器驱动 下载驱动地址:h ...
- JavaScript之创建八个对象过520
马上又到了一年一度的520了,程序猿们赶紧创建对象过520吧!!! JavaScript创建对象的几种方式: 一:字面量方式: var obj = {name: '程序猿'}; 二:通过new操作符: ...