HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
InputOn the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<10181018) on a line where n is the number of pirmes.
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1*p2*…*pn<=10181018 and 0<ai<pi<=105105for every i∈(1…n).
OutputFor each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.Sample Input
2
2 1 100
3 2
5 3
0 1 100
Sample Output
Case #1: 7
Case #2: 14
Hint
For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
题意:
求区间[X,Y]中模7为0,为满足n对关系:膜m[i]不为r[i],问这样的数字有多少。满足m[]为素数,且不为7。
思路:
- 容斥定理,保证了结果中不多算,不少算,不重复算。
- 中国剩余定理,求出最小的x=c1满足线性同余方程组,则变成求以c1为起始量,M=∏m[]为等差的数列,在[L,R]中的个数,结合抽屉原理,这里是奇加偶减。
- 保险起见,全部是long long
- 这里其实是用的线性同余方程组求解的,如果用中国剩余定理,得用快速除法。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#define ll long long
using namespace std;
ll n,ans,tmp,m[],r[];
ll BIT(ll x) { ll res=; while(x){if(x&1LL) res++;x>>=;} return res&1LL?-1LL:1LL;}
void Ex_gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(b==){ d=a; x=; y=; return ;};
Ex_gcd(b,a%b,d,y,x);y-=a/b*x;
}
ll Ex_CRT(ll L,ll R,ll N)
{
ll a,b,c,c1,c2,x,y,d,M=;
a=; c1=;
for(int i=;i<n;i++){
if(!(1LL<<i&N)) continue;// 状态
M*=m[i];
b=m[i];c2=r[i]; c=c2-c1;
Ex_gcd(a,b,d,x,y);
x=((c/d*x)%(b/d)+b/d)%(b/d);//最小正单元
c1=a*x+c1;a=a*b/d;
}
return (R-c1+M)/M - (L--c1+M)/M;//以c1为起始量,M为等差的数列,在[L,R]中的个数。
}
int main()
{
ll T,x,y,i,Case=; scanf("%lld",&T);
while(T--){
ans=;tmp=;
scanf("%lld%lld%lld",&n,&x,&y);
for(i=;i<n;i++)
scanf("%lld%lld",&m[i],&r[i]);
for(i=;i<1LL<<n;i++) ans+=BIT(i)*Ex_CRT(x,y,i);
printf("Case #%lld: %lld\n",++Case,ans);
} return ;
}
HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)的更多相关文章
- HDU 5768 Lucky7 (中国剩余定理+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...
- hdu_5768_Lucky7(中国剩余定理+容斥)
题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...
- hdu 5768 Lucky7 中国剩余定理+容斥+快速乘
Lucky7 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法
[HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...
- hdu_5213_Lucky(莫队算法+容斥定理)
题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...
- HDU - 4135 Co-prime 容斥定理
题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 4135 Co-prime 欧拉+容斥定理
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
随机推荐
- (转)linux设备驱动之USB数据传输分析 二
3.2:控制传输过程1:root hub的控制传输在前面看到,对于root hub的情况,流程会转入rh_urb_enqueue().代码如下:static int rh_urb_enqueue (s ...
- 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数
题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...
- EasyNVR无插件直播服务器播放页面的集成----单独的播放器样式
背景需求: EasyNVR自身拥有独立的客户端体系,安卓和IOS拥有各自独立的APP, 安卓下载地址:https://fir.im/EasyNVR: IOS下载可直接在APPstore搜索EasyNV ...
- socket java 实例
简单的java socket 示例 一.搭建服务器端 a).创建ServerSocket对象绑定监听端口. b).通过accept()方法监听客户端的请求. c).建立连接后,通过输入输出流读取客户端 ...
- Qt状态机框架(状态机就开始异步的运行了,也就是说,它成为了我们应用程序事件循环的一部分了)
状态机框架 Qt中的状态机框架为我们提供了很多的API和类,使我们能更容易的在自己的应用程序中集成状态动画.这个框架是和Qt的元对象系统机密结合在一起的.比如,各个状态之间的转换是通过信号触发的,状态 ...
- Django 之ModelForm
1.Form表单的回顾 Model - 数据库操作 - 验证 class A(MOdel): user = email = pwd = Form - class LoginForm(Form): em ...
- 虚拟机 minimal 安装增强包
在虚拟机下安装了一个centos的minimal镜像,发现增强包不能安装,鼠标不能在虚拟机和物理机间自由切换.不能共享粘贴板,非常是不爽,这里摸索出在centos minimal OS下安装增强包的 ...
- Jquery实现loading效果
需要引入jquery和bootstrap相关包,然后把下面的代码复制进去就可以了: <div class="modal fade" id="loadingModal ...
- 变分推断(Variational Inference)
变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...
- 美团offer
首先说明我是OP岗,RD的可能没有参考意义.本人985渣本一枚,非计算机.网络相关专业.不得不说美团的面试官给我的感觉很好,首先他们都比较极客,都是各个方向的大牛.虽然根据面试流程必须问我一些与我方向 ...