When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes. 
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi. 
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.

InputOn the first line there is an integer T(T≤20) representing the number of test cases. 
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<10181018) on a line where n is the number of pirmes. 
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi. 
It is guranteed that all the pi are distinct and pi!=7. 
It is also guaranteed that p1*p2*…*pn<=10181018 and 0<ai<pi<=105105for every i∈(1…n). 
OutputFor each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.Sample Input

2
2 1 100
3 2
5 3
0 1 100

Sample Output

Case #1: 7
Case #2: 14

Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

题意:

求区间[X,Y]中模7为0,为满足n对关系:膜m[i]不为r[i],问这样的数字有多少。满足m[]为素数,且不为7。

思路:

  • 容斥定理,保证了结果中不多算,不少算,不重复算。
  • 中国剩余定理,求出最小的x=c1满足线性同余方程组,则变成求以c1为起始量,M=∏m[]为等差的数列,在[L,R]中的个数,结合抽屉原理,这里是奇加偶减。
  • 保险起见,全部是long long
  • 这里其实是用的线性同余方程组求解的,如果用中国剩余定理,得用快速除法。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#define ll long long
using namespace std;
ll n,ans,tmp,m[],r[];
ll BIT(ll x) { ll res=; while(x){if(x&1LL) res++;x>>=;} return res&1LL?-1LL:1LL;}
void Ex_gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(b==){ d=a; x=; y=; return ;};
Ex_gcd(b,a%b,d,y,x);y-=a/b*x;
}
ll Ex_CRT(ll L,ll R,ll N)
{
ll a,b,c,c1,c2,x,y,d,M=;
a=; c1=;
for(int i=;i<n;i++){
if(!(1LL<<i&N)) continue;// 状态
M*=m[i];
b=m[i];c2=r[i]; c=c2-c1;
Ex_gcd(a,b,d,x,y);
x=((c/d*x)%(b/d)+b/d)%(b/d);//最小正单元
c1=a*x+c1;a=a*b/d;
}
return (R-c1+M)/M - (L--c1+M)/M;//以c1为起始量,M为等差的数列,在[L,R]中的个数。
}
int main()
{
ll T,x,y,i,Case=; scanf("%lld",&T);
while(T--){
ans=;tmp=;
scanf("%lld%lld%lld",&n,&x,&y);
for(i=;i<n;i++)
scanf("%lld%lld",&m[i],&r[i]);
for(i=;i<1LL<<n;i++) ans+=BIT(i)*Ex_CRT(x,y,i);
printf("Case #%lld: %lld\n",++Case,ans);
} return ;
}

HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)的更多相关文章

  1. HDU 5768 Lucky7 (中国剩余定理+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...

  2. hdu_5768_Lucky7(中国剩余定理+容斥)

    题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...

  3. hdu 5768 Lucky7 中国剩余定理+容斥+快速乘

    Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  4. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  5. 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法

    [HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...

  6. hdu_5213_Lucky(莫队算法+容斥定理)

    题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...

  7. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. (转)linux设备驱动之USB数据传输分析 二

    3.2:控制传输过程1:root hub的控制传输在前面看到,对于root hub的情况,流程会转入rh_urb_enqueue().代码如下:static int rh_urb_enqueue (s ...

  2. 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数

    题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...

  3. EasyNVR无插件直播服务器播放页面的集成----单独的播放器样式

    背景需求: EasyNVR自身拥有独立的客户端体系,安卓和IOS拥有各自独立的APP, 安卓下载地址:https://fir.im/EasyNVR: IOS下载可直接在APPstore搜索EasyNV ...

  4. socket java 实例

    简单的java socket 示例 一.搭建服务器端 a).创建ServerSocket对象绑定监听端口. b).通过accept()方法监听客户端的请求. c).建立连接后,通过输入输出流读取客户端 ...

  5. Qt状态机框架(状态机就开始异步的运行了,也就是说,它成为了我们应用程序事件循环的一部分了)

    状态机框架 Qt中的状态机框架为我们提供了很多的API和类,使我们能更容易的在自己的应用程序中集成状态动画.这个框架是和Qt的元对象系统机密结合在一起的.比如,各个状态之间的转换是通过信号触发的,状态 ...

  6. Django 之ModelForm

    1.Form表单的回顾 Model - 数据库操作 - 验证 class A(MOdel): user = email = pwd = Form - class LoginForm(Form): em ...

  7. 虚拟机 minimal 安装增强包

    在虚拟机下安装了一个centos的minimal镜像,发现增强包不能安装,鼠标不能在虚拟机和物理机间自由切换.不能共享粘贴板,非常是不爽,这里摸索出在centos  minimal OS下安装增强包的 ...

  8. Jquery实现loading效果

    需要引入jquery和bootstrap相关包,然后把下面的代码复制进去就可以了: <div class="modal fade" id="loadingModal ...

  9. 变分推断(Variational Inference)

    变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x).那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F ...

  10. 美团offer

    首先说明我是OP岗,RD的可能没有参考意义.本人985渣本一枚,非计算机.网络相关专业.不得不说美团的面试官给我的感觉很好,首先他们都比较极客,都是各个方向的大牛.虽然根据面试流程必须问我一些与我方向 ...