题目:

  求AB的正约数之和。

输入:

  A,B(0<=A,B<=5*107

输出:

  一个整数,AB的正约数之和 mod 9901。

思路:

  根据正整数唯一分解定理,若一个正整数表示为:A=p1^c* p2^c* ...... pm^cm 则其正约数之和可以表示为:S=(1+p1+p1^2+......p1^c1)*(1+p2+p2^2+......p2^c2)*......(1+pm+pm^2+......pm^cm)

那么AB就可以表示为:S'=(1+p1+p1^2+......p1^(c1*B))*(1+p2+p2^2+......p2^(c2*B))*......(1+pm+pm^2+......pm^(cm*B))

这样,我们发现每一项(以第一项为例)(1+p1+p1^2+......p1^(c1*B))是一个等比数列,根据求和公式易得:(p1^(c1*B+1)-1)/(p1-1)同理,后面的式子也是。那么接下来我们可以通过快速幂求解分子

部分。分母部分需要用到(p1-1)的乘法逆元。因为模数9901是质数,所以只要(p1-1)不是9901的倍数,那么它们就互质,根据费马小定理,乘法逆元就是(p1-2)。特别的,如果(p1-1)是9901

的倍数,那么就有(p1-1)|  9901,即:p1%9901=1,所以这一项就变成了:(1+1+1^2+……+1^(c1*B))%9901=(c1*B)+1 (mod 9901) 。具体代码如下:

#include<cstdio>
const int mod=;
typedef long long ll;
int a,b,ans=;
int factor[],fc[],cnt;
void div(int x)
{
for (int i=;i*i<=x;i++)
{
if (x%i==)
{
factor[++cnt]=i;
while (x%i==) x/=i,fc[cnt]++;
}
}
if (x>) factor[++cnt]=x,fc[cnt]=;
}
int ksm(int a,ll b)
{
int re=;
while (b)
{
if (b&) re=(1ll*re*a)%mod;
a=(1ll*a*a)%mod; b>>=;
}
return re;
}
int main()
{
scanf ("%d%d",&a,&b);
div(a);
for (int i=;i<=cnt;i++)
{
int fac=factor[i];
if ((fac-) % == )//特判分母是否是9901的倍数
{
ans = (ans%mod * (1ll*b*fc[i]+)%mod) % mod;
continue;
}
int fm=( ksm(fac,1ll*b*fc[i]+)-+mod )%mod;//分母
int fzny=( ksm(fac-,mod-) )%mod;//分子逆元
ans = (1ll*ans * fm%mod * fzny%mod)%mod;
}
printf("%d",ans);
return ;
}

poj 1845 Sumdiv(约数和,乘法逆元)的更多相关文章

  1. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  2. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

  3. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  4. HDU 1452 (约数和+乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...

  5. POJ 1845 Sumdiv (整数拆分+等比快速求和)

    当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...

  6. POJ 1845 Sumdiv(因子分解+快速幂+二分求和)

    题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x ...

  7. POJ 1845 Sumdiv (数学,乘法逆元)

    题意: 给出数字A和B,要求AB的所有因子(包括AB和1)之和 mod 9901 的结果. 思路: 即使知道公式也得推算一阵子. 很容易知道,先把分解得到,那么得到,那么的所有因子之和的表达式如下: ...

  8. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  9. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

随机推荐

  1. Delphi编译指令说明

    Delphi快速高效的编译器主要来自Object PASCAL的严谨,使用Delphi随时都在与编译器交流,大部分情况下不需要干涉编译器的运行,但是有时也需要对编译器进行必要的设置. ******** ...

  2. Linux环境安装Nginx详细步骤

    1.yum解决编译nginx所需的依赖包,之后你的nginx就不会报错了yum install gcc patch libffi-devel python-devel  zlib-devel bzip ...

  3. Android系统移植与调试之------->如何修改Android设备的默认休眠时间

    1.找到~/mx0831-0525/frameworks/base/packages/SettingsProvider/res/values/ defaults.xml文件 2.修改默认休眠时间 3. ...

  4. java访问微信接口发送消息

    最近在开发activiti流程的时候有个需求:流程到达每个审批节点后,需要向该节点的审批人发送一个消息,提示有审批需要处理. 参考了一下微信的开发者文档和网络上的一些技术博客,现在记录一下.以便后续继 ...

  5. activiti 基础搭建

    首先在eclipse内添加activiti的插件,https://blog.csdn.net/qq_22701869/article/details/79537971 1.创建一个maven的java ...

  6. $.ajax()方法详解(转)

    转: http://www.cnblogs.com/tylerdonet/p/3520862.html 1.url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. 2.type: ...

  7. 第1条:确认自己所用的Python版本

    很多电脑都预装了多个版本的标准CPython运行时环境,然而,在命令行中输入默认的python命令之后,究竟会执行哪一个版本无法肯定. python通常是python2.7的别名,但也有可能是pyth ...

  8. 使用MAVEN手动创建web项目

    问题:如下图,使用maven创建webapp项目时,默认使用maven-archetype-webapp这个archetype,由于这个archetype比较古老,有如下缺点: 1. 默认生成的项目会 ...

  9. 图形用户界面(GUI)事件监听机制——窗体事件Frame

    窗体事件.Button的使用 本事例给出一个窗体的定义方法,基本属性设置,给窗体添加退出按钮,让按钮具备退出的功能.熟悉监听器的使用 按钮就是事件源. 那么选择哪一个监听器呢? 通过关闭窗体事例了解到 ...

  10. UI控件概述

    常见UI控件 UIKit框架提供了非常多功能强大又易用的UI控件,以便于开发者打造出各式各样的App 以下列举一些在开发中常见的UI控件(稍后补上图片示例) 1.UILabel– 文本标签:作用是显示 ...