(一)、数制 计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。
一般计数都采用进位计数,其特点是: (1)逢N进一,N是每种进位计
数制表示一位数所需要的符号数目为基数。 (2)采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。 在计算机中:D7 D6 D5 D4 D3 D2 D1 D0 只有两种0和1 8 4 2 1二)、数制转换不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。进制:有10个基数:0 ,1,2,3,4,5,6,7,8, 9 逢十进一 二进制:有2 个基数:0 ,1  逢二进一 八进制:有8个基数:0 ,1,2,3,4,5,6, 7 逢八进一十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一

1、数的进位记数法 N=a n-1*p n-1+a n-2*p n-2+…+a2*p2+a1*p1+a0*p0】

2、十进制与(二、八、十六)进制数之间的转换

(1)十进制转换成二进制:十进制转二进制通常采用除2取余法,十进制数逐次整除2,直至商为0,所得余数按相反顺序写出,即为二进制数。

在十进制与二进制的转换时,采用8421法则。

8    7      6       5     4    3    2   1

128    64    32     16    8    4    2   1

例:(36)10转换为二进制

2  | 36....0

2  | 18....0

2  |  9....1

2  |  4....0

2  |  2....0

1

所以(36)10即为(100100)2

同样,十进制转化为八、十六进制

例1:(129)10转换为八进制

8 |  129....1

8 |   16....0

2

所以(129)10即为(201)8

例2:(179)10转换为十六进制

16| 179...3

11

在十六进制中,11必须写为B,所以(179)10即为(B3)16

(2)其他进制数p转换为十进制

二进制转换为十进制:采用a*p0+b*p1+c*p2+......n*pn-1

例:(1011001)2转换为十进制

1*20+0*21+0*22+1*23+1*24+0*25+1*26=89

同样,八、十六进制转换为十进制

例1:(1213210)8

=0*80+1*81 +2*82 +3*83 +1*84 +2*85 +1*86

=(333448)10

例2:(1BC2)16

=2*160 +C*161 +B*162 +1*163

=2*160+12*161 +11*162 +1*163

=(1119)10

(3)其他进制之间的转换

二进制转换为八进制:对于整数,采用从右到左每三位一组,不够三位的在其左边补齐0,每组单独转换出来,即为八进制数。

例:(001 101  111   011)2

1     5       7      3

所以,(1573)8即为所得的八进制数。

八进制转换为二进制:将每位八进制由三位二进制数代替,即可完成转换。

例:(1    7   3     5  )8

001 111 011 101

所以,(1111011101)2即为所得的二进制数。

二进制转换为十六进制:由于2的4次方=16,所以依照二进制与八进制的转换方法,将进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。

例:(1001 0111 0111 1001)2

9       7      7      9

所以,(9779)16为所得的十六进制数

十六进制转换为二进制:只要将每一位十六进制数用四位相应的进制数表示,即可完成转换。例:( 8     7       6     5)16

1000 0111 0110  0101

所以,(1000 0111 0110 0101)2为所得的二进制数。

10-08C#基础--进制转换的更多相关文章

  1. Java基础-进制转换

    Java基础-进制转换 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Java 程序中常用的进制 1>.十进制,由“0123456789” 这10个数字组成,逢十进一: ...

  2. 【搬砖】安卓入门(2)- Java开发编程基础--进制转换和运算符

    02.01_Java语言基础(常量的概述和使用)(掌握) A:什么是常量 在程序执行的过程中其值不可以发生改变 B:Java中常量的分类 字面值常量 自定义常量(面向对象部分讲) C:字面值常量的分类 ...

  3. C语言基础——进制转换 / 数据表示

    第一部分:进制转换 二进制:由0~1构成,逢2进1 八进制:由0~7构成,逢8进1 十六进制:由0~9.A~F构成,逢16进1 两个基本概念 基数:n进制基数为n 123.4 = 1*10^2 + 2 ...

  4. C语言基础:进制转换,变量,常量,表达式,基本数据类型,输出函数,输入函数,运算符. 分类: iOS学习 c语言基础 2015-06-10 21:39 25人阅读 评论(0) 收藏

    二进制:以0b开头,只有0和1两种数字.如0101 十进制:0~9十个数字表示.如25 十六进制:以0~9,A~F表示,以0X开头.如0X2B 十进制转换为X进制:连除倒取余 X进制转换为十进制:按权 ...

  5. C#基础 进制转换6/17

    二进制→十进制: 计算公式:a*20+b*21+c*22+…+m*2(n-1) 公式中a为二进制数右边第一位数,b为第二位数,以此类推 例:二进制1011010转换为十进制数为 0*20+1*21+0 ...

  6. JS中的进制转换以及作用

    js的进制转换, 分为2进制,8进制,10进制,16进制之间的相互转换, 我们直接利用 对象.toString()即可实现: //10进制转为16进制 ().toString() // =>&q ...

  7. Java基础(进制转换-)

    进制概述: 进制也就是进位计数制,是人为定义的带进位的计数方法(有不带进位的计数方法,比如原始的结绳计数法,唱票时常用的“正”字计数法,以及类似的tally mark计数). 对于任何一种进制---X ...

  8. Java基础笔记(3) 进制与进制转换

    ---恢复内容开始--- 进制 在一般生活中,我们一直在应用的十进制,就是逢十进一,而今天我们要接触的是,计算机编程常用的进制!首先我们要知道,计算机内部运算采用的是二进制,也就是逢二进制! 1.什么 ...

  9. C#-进制转换、基础语句、语句的总结与练习——★for循环:九九乘法表、三角形、菱形★

    //for循环嵌套练习——打一个九九乘法表 ; i <= ; i++) { ; j <= i; j++) { Console.Write(j + "×" + i + & ...

随机推荐

  1. MAC 系列 之XCode7.1 + HBuilder MUI 离线打包 ipa 上次application leader 问题:ERROR ITMS - 90032

    90032 解决方法:

  2. jQuery 获取jsp页面中用iframe引入的jsp页面中的值

    <iframe scrolling="no" src="<c:url value='/unitBaseperson/view.do?para=9&op ...

  3. DanceLink

    DanceLink是一个可以解决精确覆盖和重复覆盖的搜索算法 重复覆盖就是在精确覆盖的remove等处做改变 都是十字循环链表 精确覆盖 给出一个01矩阵 要求选择几行 使每一列都有且仅有一个1 在求 ...

  4. linux中动态链接库的创建与使用

    LINUX系统中动态链接库的创建与使用 http://www.cnblogs.com/ardar/articles/357321.html 正常C源文件编写,编译时-shared即可得到SO, gcc ...

  5. OSX 10.11.1 预览照片绿屏的问题

    最新版本的El Capitan仍然会出现Finder预览多张照片时,会几率性出现绿屏或者部分绿色的照片: 这是新版“预览.app”的bug,解决方法有两个,一个是等待升级补丁,暂时一个一个文件预览,就 ...

  6. 总结一下内核DEBUG中的dump_stack, BUG, BUG_ON以及panic

    有点空闲时间,让我们来总结一下内核DEBUG中的各个语句吧.随便找个内核驱动,在init函数里面加入如下代码测试: u8 a = 1, b = 0; printk("----------du ...

  7. kylin_异常_01_java.io.FileNotFoundException: /developer/apache-kylin-2.3.0-bin/tomcat/conf/.keystore

    一.异常现象 kylin安装完,启动后,控制正常,kylin后台也能正常访问.但是去看kylin的日志,却发现报错了: SEVERE: Failed to load keystore type JKS ...

  8. New Concept English three (47)

    Pollution is the price we pay for an overpopulated, over industrialized planet. When you come to thi ...

  9. uva1636 - Headshot(条件概率)

    简单的条件概率题,直接再来一枪没子弹的概率是所有子串”00“的数目除以‘0’的数目,随机转一下再打没子弹的概率是‘0’的数目除以总数目. #include<iostream> #inclu ...

  10. bzoj 5016 一个简单的询问

    THUWC 考了莫队(这个应该可以说吧) 然而不会莫队,签到失败,所以找到了一道长得差不多的题写一写 为什么这么长时间都没有发现这道题(半恼 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问 ...