哇塞?开始的三个数其中两个数一定能确定一个序列。(鸽巢原理)

#include <bits/stdc++.h>
using namespace std;
typedef long long LL; const int N=3e4+10; int a[N],n;
bool vis[N]; void print(vector<int>v)
{
int sz = v.size();
for(int i=0; i<sz; i++)
printf("%d ",v[i]);
puts("");
} bool check(vector<int>v)
{
if(!v.size())
return false;
if(v.size()==1||v.size()==2) return true; int d=v[1]-v[0];
for(int i=2; i<v.size(); i++)
if(v[i]-v[i-1]!=d)
return false;
return true;
} bool solve(int l,int r)
{
vector<int>v1,v2;
memset(vis,false,sizeof(vis));
int d=a[r]-a[l];
int last=-1,get=a[l];
for(int i=1; i<=n; i++)
if(a[i]==get)
{
get+=d;
v1.push_back(a[i]);
last=i;
}
else vis[i]=1;
for(int i=1; i<=n; i++)
if(vis[i])
v2.push_back(a[i]);
if(check(v2))
{
print(v1);
print(v2);
return true;
}
vis[last]=1;
v1.pop_back();
v2.clear();
for(int i=1; i<=n; i++)
if(vis[i])
v2.push_back(a[i]);
if(check(v2))
{
print(v1);
print(v2);
return true;
}
return false;
} int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
if(n==2)
printf("%d\n%d",a[1],a[2]);
else if(!solve(1,2)&&!solve(2,3)&&!solve(1,3))
printf("No solution");
return 0;
}

CodeForces 125D【鸽巢原理】的更多相关文章

  1. Codeforces Round #648 (Div. 2) E. Maximum Subsequence Value(鸽巢原理)

    题目链接:https://codeforces.com/problemset/problem/1365/E 题意 有 $n$ 个元素,定义大小为 $k$ 的集合值为 $\sum2^i$,其中,若集合内 ...

  2. Codeforces.618F.Double Knapsack(构造 鸽巢原理)

    题目链接 \(Description\) 给定两个大小为\(n\)的可重集合\(A,B\),集合中的元素都在\([1,n]\)内.你需要从这两个集合中各选一个非空子集,使它们的和相等.输出方案. \( ...

  3. Codeforces 1188C DP 鸽巢原理

    题意:定义一个序列的beauty值为序列中元素之差绝对值的最小值,现在给你一个数组,问所有长度为k的子序列的beauty值的和是多少? 思路:(官方题解)我们先解决这个问题的子问题:我们可以求出bea ...

  4. ACM数论之旅14---抽屉原理,鸽巢原理,球盒原理(叫法不一又有什么关系呢╮(╯▽╰)╭)

    这章没有什么算法可言,单纯的你懂了原理后会不会运用(反正我基本没怎么用过 ̄ 3 ̄) 有366人,那么至少有两人同一天出生(好孩子就不要在意闰年啦( ̄▽ ̄")) 有13人,那么至少有两人同一月 ...

  5. Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) F. Double Knapsack 鸽巢原理 构造

    F. Double Knapsack 题目连接: http://www.codeforces.com/contest/618/problem/F Description You are given t ...

  6. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  7. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  8. cf319.B. Modulo Sum(dp && 鸽巢原理 && 同余模)

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  9. poj 2356 Find a multiple(鸽巢原理)

    Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...

随机推荐

  1. 仿联想商城laravel实战---3、前端页面搭建(什么情况下需要路由接参数)

    仿联想商城laravel实战---3.前端页面搭建(什么情况下需要路由接参数) 一.总结 一句话总结: 比如访问课程的时候,不同的课程(比如云知梦),比如访问不同的商品,比如访问不同的分类 //商品详 ...

  2. algorithm 简单用法

    algorithm 简单用法 #include <iostream> #include <vector> #include <algorithm> using na ...

  3. JavaUtil_06_HttpUtil_使用httpclient实现

    一.简介 使用 appache 的 httpclient 来实现的 二.源码 package com.ray.weixin.gz.util; import java.io.File; import j ...

  4. python-编译安装Python2.7

    yum中最新的也是Python 2.6.6,只能下载Python 2.7.5的源代码自己编译安装. 操作步骤如下: 1)下载并解压Python 2.7.9的源代码 cd /opt wget --no- ...

  5. 绘图工具--turtle模块

    turtle模块主要使用两个类,一个是TurtleScreen类,表示画布(窗口),用来展示画的位置:一个是Turtle类,用来充当画笔,用来画. 两个类的方法也以同名的函数的形式存在,所以可以以面向 ...

  6. objdump 命令的用法

    gcc命令之 objdump ---------------objdump是用查看目标文件或者可执行的目标文件的构成的GCC工具---------- 以下3条命令足够那些喜欢探索目标文件与源代码之间的 ...

  7. Android之SurfaceView实现视频播放

    1.案例一 布局文件: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns: ...

  8. 11g 如何添加,替换,移除,迁移 OCR ?

    一: 增加 裸设备上,创建至少280MB的裸设备,权限是640,属主是root:oinstall共享文件系统 Or NFS,创建空文件,权限是640,属主是root:oinstall root用户执行 ...

  9. [转]CSS遮罩——如何在CSS中使用遮罩

    特别声明:此篇文章由D姐根据Christian Schaefer的英文文章原名<CSS Masks – How To Use Masking In CSS Now>进行翻译,整个译文带有我 ...

  10. Poj 1659 Distance on Chessboard(国际象棋的走子规则)

    一.Description 国际象棋的棋盘是黑白相间的8 * 8的方格,棋子放在格子中间.如下图所示: 王.后.车.象的走子规则如下: 王:横.直.斜都可以走,但每步限走一格. 后:横.直.斜都可以走 ...