哇塞?开始的三个数其中两个数一定能确定一个序列。(鸽巢原理)

#include <bits/stdc++.h>
using namespace std;
typedef long long LL; const int N=3e4+10; int a[N],n;
bool vis[N]; void print(vector<int>v)
{
int sz = v.size();
for(int i=0; i<sz; i++)
printf("%d ",v[i]);
puts("");
} bool check(vector<int>v)
{
if(!v.size())
return false;
if(v.size()==1||v.size()==2) return true; int d=v[1]-v[0];
for(int i=2; i<v.size(); i++)
if(v[i]-v[i-1]!=d)
return false;
return true;
} bool solve(int l,int r)
{
vector<int>v1,v2;
memset(vis,false,sizeof(vis));
int d=a[r]-a[l];
int last=-1,get=a[l];
for(int i=1; i<=n; i++)
if(a[i]==get)
{
get+=d;
v1.push_back(a[i]);
last=i;
}
else vis[i]=1;
for(int i=1; i<=n; i++)
if(vis[i])
v2.push_back(a[i]);
if(check(v2))
{
print(v1);
print(v2);
return true;
}
vis[last]=1;
v1.pop_back();
v2.clear();
for(int i=1; i<=n; i++)
if(vis[i])
v2.push_back(a[i]);
if(check(v2))
{
print(v1);
print(v2);
return true;
}
return false;
} int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
if(n==2)
printf("%d\n%d",a[1],a[2]);
else if(!solve(1,2)&&!solve(2,3)&&!solve(1,3))
printf("No solution");
return 0;
}

CodeForces 125D【鸽巢原理】的更多相关文章

  1. Codeforces Round #648 (Div. 2) E. Maximum Subsequence Value(鸽巢原理)

    题目链接:https://codeforces.com/problemset/problem/1365/E 题意 有 $n$ 个元素,定义大小为 $k$ 的集合值为 $\sum2^i$,其中,若集合内 ...

  2. Codeforces.618F.Double Knapsack(构造 鸽巢原理)

    题目链接 \(Description\) 给定两个大小为\(n\)的可重集合\(A,B\),集合中的元素都在\([1,n]\)内.你需要从这两个集合中各选一个非空子集,使它们的和相等.输出方案. \( ...

  3. Codeforces 1188C DP 鸽巢原理

    题意:定义一个序列的beauty值为序列中元素之差绝对值的最小值,现在给你一个数组,问所有长度为k的子序列的beauty值的和是多少? 思路:(官方题解)我们先解决这个问题的子问题:我们可以求出bea ...

  4. ACM数论之旅14---抽屉原理,鸽巢原理,球盒原理(叫法不一又有什么关系呢╮(╯▽╰)╭)

    这章没有什么算法可言,单纯的你懂了原理后会不会运用(反正我基本没怎么用过 ̄ 3 ̄) 有366人,那么至少有两人同一天出生(好孩子就不要在意闰年啦( ̄▽ ̄")) 有13人,那么至少有两人同一月 ...

  5. Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) F. Double Knapsack 鸽巢原理 构造

    F. Double Knapsack 题目连接: http://www.codeforces.com/contest/618/problem/F Description You are given t ...

  6. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  7. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  8. cf319.B. Modulo Sum(dp && 鸽巢原理 && 同余模)

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  9. poj 2356 Find a multiple(鸽巢原理)

    Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...

随机推荐

  1. 重置 oschina 的CSS

    嗯, 目前只是改了一下OSChina的几个主要DIV宽度而以,还是很粗糙, 以后会慢慢改进的. ---------------------------------------------------- ...

  2. 一个类的类类型是Class类的实例,即类的字节码

    new 是静态加载类,编译时期加载.一遍功能性的类 需要动态加载

  3. 设计模式 之 《建造者模式(Builder)》

    #ifndef __BUILDER_MODEL__ #define __BUILDER_MODEL__ #include <string> #include <vector> ...

  4. Spring MVC表单提交

    实际应用中,列表中的单条记录的修改,可能需要传很多对象参数到后台服务器,Spring MVC表单标签<form:> 提供了一种简洁的提交方式. <form id="form ...

  5. 多级联动下拉菜单--cxSelect

    jquery cxSelect插件 github地址:https://github.com/ciaoca/cxSelect demo地址:http://code.ciaoca.com/jquery/c ...

  6. 数据结构-二叉搜索树的js实现

    一.树的相关概念 1.基本概念 子树 一个子树由一个节点和它的后代构成. 节点的度 节点所拥有的子树的个数. 树的度 树中各节点度的最大值 节点的深度 节点的深度等于祖先节点的数量 树的高度 树的高度 ...

  7. HDOJ1015(简单深搜)

    Safecracker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. Scala总结

    Scala总结 ===概述 scala是一门以Java虚拟机(JVM)为目标运行环境并将面向对象和函数式编程的最佳特性结合在一起的静态类型编程语言. scala是纯粹的面向对象的语言.java虽然是面 ...

  9. MongoDB优化之二:常见优化方法

    四个方面进行 cpu/io 方面的优化处理: 1.集群架构上进行读写分离.所有查询优先考虑在从库上读取,写操作在主库上执行.避免主库混合读写压力过大,也减少主库上读写记录的锁冲突. connectio ...

  10. smbpasswd和pdbedit

    samba用户管理: smbpasswd :smbpasswd命令属于samba套件,能够实现添加或删除samba用户和为用户修改密码. smbpasswd [options] USERNAME -a ...