2287: 【POJ Challenge】消失之物

Description

ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

暴力背包?不存在的。

看数据要\(n^2\)做。

首先应该处理出在n个物品的范围内装满某个体积的方案数。

转移:

\[(f[j]+=f[j-w[i]])%=mod;
\]

再设\(count[i][j]\)表示不选第i个物品,装j体积的方案数。

分情况讨论:

\[if(!j)count(i)(j)=1;
\]

\[if(j<=w[i])count(i)(j)=f(j)
\]

\[if(j>w[i])count(i)(j)=f(j)-count(i)(j-w[i])
\]

第三个方程是在当前体积大于w[i]的时候,不装i的方案数。

转移思路就是不选i物品的方案数=全集-选i物品的方案数。

\(count(i)(j-w[i])\)比较难理解,意思是在不选i的前提下装了\(j-w(i)\)的体积,然后选择i这个物品凑够j的体积。

code:

#include<iostream>
#include<cstdio>
using namespace std;
const int wx=2017;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
}
int n,m;
int f[wx],w[wx];
int c[wx][wx];
int main(){
n=read();m=read();
f[0]=1;
for(int i=1;i<=n;i++)w[i]=read();
for(int i=1;i<=n;i++){
for(int j=m;j>=w[i];j--){
(f[j]+=f[j-w[i]])%=10;
}
}
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
if(!j)c[i][j]=1;
else if(j<w[i]){
c[i][j]=(f[j]+10)%10;printf("%d",c[i][j]);
}
else {
c[i][j]=(f[j]-c[i][j-w[i]]+10)%10;printf("%d",c[i][j]);
}
}puts("");
}
return 0;
}

背包DP【bzoj2287】: 【POJ Challenge】消失之物的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  3. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  4. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  5. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  6. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. bzoj2287【POJ Challenge】消失之物 缺一01背包

    bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...

  9. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

随机推荐

  1. guava_学习_00_资源帖

    一.精选 1.Google Guava 官方教程 二.参考资源 1.Google Guava官方教程(中文版) 2.使用Guava编写优雅代码 3.Google guava工具类的介绍和使用

  2. Linux下视频流媒体直播服务器搭建详解

    目标: 搭建网络直播流媒体服务器系统(Linux操作系统) 背景: 用于OTT-TV大并发的直播和点播的一套流媒体服务器系统.支持N x 24小时录制回看和直播的服务器端解决方案. 解决方案: l  ...

  3. bzoj 2342: 双倍回文 回文自动机

    题目大意: 定义双倍回文串的左一半和右一半均是回文串的长度为4的倍数的回文串 求一个给定字符串中最长的双倍回文串的长度 题解: 我们知道可以简单地判定以某一点结尾的最长回文串 我们知道可以简单地判定以 ...

  4. box head上身旋转问题

    现有资源: 1.可旋转上身的动画,旋转角度左右各90度. 2.下身没有旋转动画(腿部左转右转动画) 使用场景: 1.整个模型随鼠标位置旋转,不使用上身旋转动画. 缺点:人物转向动画僵硬.  解决方案: ...

  5. Windows下安装MySQL-5.7.19

    下载MySQL-5.7.19版本,解压之后发现安装包不是一个exe文件: 于是网上找资料,发现了另外一种安装方法. 1.新建一个环境变量,我的电脑-属性-高级-环境变量-系统变量-新建 2.在系统变量 ...

  6. 堆排序的JavaScript实现

    思想 把数组当做二叉树来排序: 索引0是树的根节点: 除根节点外,索引为N的节点的父节点索引是(N-1)/2: 索引为N的节点的左子节点索引是 2*N+1; 索引为N的节点的右子节点索引是 2*N+2 ...

  7. android获取时间差的方法

    本文实例讲述了android获取时间差的方法.分享给大家供大家参考.具体分析如下: 有些时候我们需要获取当前时间和某个时间之间的时间差,这时如何获取呢? 1. 引用如下命名空间: import jav ...

  8. java基础知识(10)---包

    包:定义包用package关键字. 1:对类文件进行分类管理. 2:给类文件提供多层名称空间. 如果生成的包不在当前目录下,需要最好执行classpath,将包所在父目录定义到classpath变量中 ...

  9. 四种生成和解析XML文档的方法介绍

    解析XML的方法越来越多,但主流的方法也就四种,即:DOM.SAX.JDOM和DOM4J 1.DOM(Document Object Model) DOM是用与平台和语言无关的方式表示XML文档的官方 ...

  10. js遍历for,forEach, for in,for of

    ECMAScript5(es5)有三种for循环 简单for for in forEach ECMAScript6(es6)新增 for of 简单for for是循环的基础语法,也是最常用的循环结构 ...