2287: 【POJ Challenge】消失之物

Description

ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

暴力背包?不存在的。

看数据要\(n^2\)做。

首先应该处理出在n个物品的范围内装满某个体积的方案数。

转移:

\[(f[j]+=f[j-w[i]])%=mod;
\]

再设\(count[i][j]\)表示不选第i个物品,装j体积的方案数。

分情况讨论:

\[if(!j)count(i)(j)=1;
\]

\[if(j<=w[i])count(i)(j)=f(j)
\]

\[if(j>w[i])count(i)(j)=f(j)-count(i)(j-w[i])
\]

第三个方程是在当前体积大于w[i]的时候,不装i的方案数。

转移思路就是不选i物品的方案数=全集-选i物品的方案数。

\(count(i)(j-w[i])\)比较难理解,意思是在不选i的前提下装了\(j-w(i)\)的体积,然后选择i这个物品凑够j的体积。

code:

#include<iostream>
#include<cstdio>
using namespace std;
const int wx=2017;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
}
int n,m;
int f[wx],w[wx];
int c[wx][wx];
int main(){
n=read();m=read();
f[0]=1;
for(int i=1;i<=n;i++)w[i]=read();
for(int i=1;i<=n;i++){
for(int j=m;j>=w[i];j--){
(f[j]+=f[j-w[i]])%=10;
}
}
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
if(!j)c[i][j]=1;
else if(j<w[i]){
c[i][j]=(f[j]+10)%10;printf("%d",c[i][j]);
}
else {
c[i][j]=(f[j]-c[i][j-w[i]]+10)%10;printf("%d",c[i][j]);
}
}puts("");
}
return 0;
}

背包DP【bzoj2287】: 【POJ Challenge】消失之物的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  3. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  4. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  5. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  6. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. bzoj2287【POJ Challenge】消失之物 缺一01背包

    bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...

  9. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

随机推荐

  1. poj-1379 Run Away(模拟退火算法)

    题目链接: Run Away Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7982   Accepted: 2391 De ...

  2. eclipse导入java web项目,项目出现红叉而其他地方没有红叉的问题解决方法

    eclipse导入别人的Java web项目时会出现这种情况:仅项目名出现红叉而其他地方没有红叉的问题.这可能是以下几种情况导致的,其解决方法如下: 1.导入项目之前,请确认工作空间编码已设置为utf ...

  3. UVA12163 游戏

    题目大意 现在有两个人在一个n个结点的有向图上玩一个双人游戏,保证图中无环和自圈.游戏的规则如下:1.初始的时候$i$号点有一个正权值$value_i$2.两名玩家依次操作,每个玩家在当前回合可以选择 ...

  4. UDEV管理RAC共享存储

    背景:操作系统 centos 6.7 数据库:11.2.0.1 操作流程: 1. 确认在所有RAC节点上已经安装了必要的UDEV包[root@11gnode1 ~]# rpm -qa|grep ude ...

  5. Operating System-Thread(1)What and Why Thread &&进程和线程的对比

    开始线程(Thread)之旅,作为程序员,打交道更多的是线程,各种多线程程序,并行编程都是以线程为基础进行的.本文主要内容: What and Why Thread 进程和线程的对比 一.What a ...

  6. Poj 1125 Stockbroker Grapevine(Floyd算法求结点对的最短路径问题)

    一.Description Stockbrokers are known to overreact to rumours. You have been contracted to develop a ...

  7. RSA-CRT leaks__因使用中国余数定理计算RSA所引起的私钥泄露

    在heartbleed[1]漏洞后,很多用户打开了PFS[2]功能.但很不幸,之后RedHat又报告出在多个平台上存在RSA-CRT导致的密钥泄露[3]. 中国余数定理(CRT)常被用在RSA的计算中 ...

  8. 修改initrd.img里ko文件的一个小tips

    在经历以下步骤解开initrd.img文件之后: 若file initrd.img 指示initrd.img为gzip文件,则2: mv initrd.img initrd.gz gunzip -d ...

  9. wpf staticresource 是不允许向前引用(forward reference)的

    不允许向前引用(forward reference)在C/C++中中很常见,即在语法上,未定义变量.类之前,不能使用. 没想到wpf中的wpf staticresource也遵循这种规则.资源字典中, ...

  10. 【转】Jquery折叠效果

    转自:http://www.cnblogs.com/clc2008/archive/2011/10/25/2223254.html <!DOCTYPE html PUBLIC "-// ...