2287: 【POJ Challenge】消失之物

Description

ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

暴力背包?不存在的。

看数据要\(n^2\)做。

首先应该处理出在n个物品的范围内装满某个体积的方案数。

转移:

\[(f[j]+=f[j-w[i]])%=mod;
\]

再设\(count[i][j]\)表示不选第i个物品,装j体积的方案数。

分情况讨论:

\[if(!j)count(i)(j)=1;
\]

\[if(j<=w[i])count(i)(j)=f(j)
\]

\[if(j>w[i])count(i)(j)=f(j)-count(i)(j-w[i])
\]

第三个方程是在当前体积大于w[i]的时候,不装i的方案数。

转移思路就是不选i物品的方案数=全集-选i物品的方案数。

\(count(i)(j-w[i])\)比较难理解,意思是在不选i的前提下装了\(j-w(i)\)的体积,然后选择i这个物品凑够j的体积。

code:

#include<iostream>
#include<cstdio>
using namespace std;
const int wx=2017;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
}
int n,m;
int f[wx],w[wx];
int c[wx][wx];
int main(){
n=read();m=read();
f[0]=1;
for(int i=1;i<=n;i++)w[i]=read();
for(int i=1;i<=n;i++){
for(int j=m;j>=w[i];j--){
(f[j]+=f[j-w[i]])%=10;
}
}
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
if(!j)c[i][j]=1;
else if(j<w[i]){
c[i][j]=(f[j]+10)%10;printf("%d",c[i][j]);
}
else {
c[i][j]=(f[j]-c[i][j-w[i]]+10)%10;printf("%d",c[i][j]);
}
}puts("");
}
return 0;
}

背包DP【bzoj2287】: 【POJ Challenge】消失之物的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  3. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  4. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  5. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  6. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. bzoj2287【POJ Challenge】消失之物 缺一01背包

    bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...

  9. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

随机推荐

  1. C++中抽象类和多继承

    C++中没有java中接口的概念,但是可以使用抽象类来模拟java中的接口. 工程上的多继承 工程开发中的多继承几乎是不被使用的 多继承带来的代码的复杂性,远远大于其代码带来的便利性. 多继承对代码的 ...

  2. OpenCV——黑白调整

    参考算法: 闲人阿发伯的博客 // define head function #ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUD ...

  3. 【leetcode刷题笔记】Search a 2D Matrix

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  4. selenium如何获取已定位元素的属性值?

    HTML源代码: <div class="res-status" data-fortune="5" data-selfsos="" d ...

  5. Android Studio配置使用git

    一.准备 如果没有安装git,那么先要到到Git官网下载git,然后按照提示一步一步安装即可,这个没有什么难度,不过要记得安装的目录. 二.Android Studio配置git File->S ...

  6. Mac For Mongodb安装启动、停止及启动授权

    1.到Mongodb官网下载相应的安装包 地址:https://www.mongodb.com/download-center?jmp=nav#community 2.Mac Mongodb安装过程 ...

  7. jquery 图片轮换

    jquery 图片轮换 1.下载jquery.superslide.2.1.1.js (百度搜索) 2.下载Jquery-1.4.1.js(百度搜索下载) 准备工作好了,下面开始实现 3.html & ...

  8. mysql错误代号大全

    B.1. 服务器错误代码和消息 服务器错误信息来自下述源文件: · 错误消息信息列在share/errmsg.txt文件中."%d"和"%s"分别代表编号和字符 ...

  9. 115个Java面试题和答案

    面向对象编程(OOP) Java是一个支持并发.基于类和面向对象的计算机编程语言.下面列出了面向对象软件开发的优点: 代码开发模块化,更易维护和修改. 代码复用. 增强代码的可靠性和灵活性. 增加代码 ...

  10. mysql修改查询出来的时间格式

    var d = new Date(rss.createtime); let youWant = d.getFullYear() + ) + '-' + d.getDate() + ' ' + d.ge ...