题目链接


Solution

Meet in the middle.

考虑到 \(2^{35}\) 枚举会超时,于是分成两半枚举(尽量平均).

然后不能 \(n^2\) 去匹配,需要用到一点贪心:

将数分成 \(p,q\) 两组,那么对于任意数 \(p_i\) ;

它与 \(q\) 数组中组成最大得到的值即为

最大的与 \(p_i\) 之和不超过\(m\) 的数.

然后就可以贪心优化了.

还要注意一点就是最大的两个也要考虑一次.

Code

#include<bits/stdc++.h>
#define N 1<<20
#define ll long long
using namespace std; ll n,m,w[40],p[N],q[N],ans;
ll cntp,cntq,a[40],b[40]; void dfs1()
{
ll num=(n+1)/2;
for(ll i=0;i<num;i++)a[i]=w[i*2+1];
ll tot=(1<<num)-1;
for(ll i=1;i<=tot;i++)
{
ll Tot=0;
for(ll j=0;j<num;j++)
if((1<<j)&i)
Tot+=a[j],Tot%=m;
p[++cntp]=Tot;
}
} void dfs2()
{
ll num=n/2;
for(ll i=0;i<num;i++)
b[i]=w[(i+1)*2];
ll tot=(1<<num)-1;
for(ll i=1;i<=tot;i++)
{
ll Tot=0;
for(ll j=0;j<num;j++)
if((1<<j)&i)
Tot+=b[j],Tot%=m;
q[++cntq]=Tot;
}
} int main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++)
scanf("%lld",&w[i]);
sort(w+1,w+n+1);
dfs1(); dfs2();
sort(p+1,p+cntp+1);
sort(q+1,q+cntq+1);
//for(ll i=1;i<=cntp;i++)cout<<p[i]<<' ';cout<<endl;
//for(ll i=1;i<=cntq;i++)cout<<q[i]<<' ';cout<<endl;
int i=0,j=cntq;
while(i<=cntp){
while(p[i]+q[j]>=m) --j;
ans=max(ans,p[i]+q[j]),++i;
}//贪心优化部分
ans=max(ans,(p[cntp]+q[cntq])%m);
cout<<ans<<endl;
}

CF888E Maximum Subsequence (Meet in the middle,贪心)的更多相关文章

  1. $CF888E\ Maximum\ Subsequence$ 搜索

    正解:$meet\ in\ the\ middle$ 解题报告: 传送门$QwQ$. 发现数据范围为$n\leq 35$,所以$2^{\frac{n}{2}}$是可做的. 所以先拆成$A,B$两个集合 ...

  2. CF888E Maximum Subsequence(meet in the middle)

    给一个数列和m,在数列任选若干个数,使得他们的和对m取模后最大( \(1<=n<=35\) , \(1<=m<=10^{9}\)) 考虑把数列分成两份,两边分别暴力求出所有的可 ...

  3. [CF888E] Maximum Subsequence 序列分治

    早期作品,不喜轻喷. LG传送门 序列分治板子题. 切这道题用了好长时间,所以想发篇题解作为纪念 . 首先,我们认真观察题目数据(面向数据做题是个好习惯),发现题目的\(n\)竟然只有\(35\),我 ...

  4. 【CF888E】Maximum Subsequence(meet in the middle)

    [CF888E]Maximum Subsequence(meet in the middle) 题面 CF 洛谷 题解 把所有数分一下,然后\(meet\ in\ the\ middle\)做就好了. ...

  5. 【CF888E】Maximum Subsequence 折半搜索

    [CF888E]Maximum Subsequence 题意:给你一个序列{ai},让你从中选出一个子序列,使得序列和%m最大. n<=35,m<=10^9 题解:不小心瞟了一眼tag就一 ...

  6. Codeforces Round #648 (Div. 2) E. Maximum Subsequence Value 贪心

    题意:E.Maximum Subsequence Value 题意: 给你n 个元素,你挑选k个元素,那么这个 k 集合的值为 ∑2i,其中,若集合内至少有 max(1,k−2)个数二进制下第 i 位 ...

  7. Meet in the middle学习笔记

    Meet in the middle(MITM) Tags:搜索 作业部落 评论地址 PPT中会讲的很详细 当搜索的各项互不影响(如共\(n\)个物品前\(n/2\)个物品选不选和后\(n/2\)个物 ...

  8. Educational Codeforces Round 32:E. Maximum Subsequence(Meet-in-the-middle)

    题目链接:E. Maximum Subsequence 用了一个Meet-in-the-middle的技巧,还是第一次用到这个技巧,其实这个技巧和二分很像,主要是在dfs中,如果数量减小一半可以节约很 ...

  9. 1007 Maximum Subsequence Sum

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

随机推荐

  1. Centos7 使用LVM进行新加磁盘管理

    centos7使用LVM管理一块新的磁盘   注意!文中凡是带#的都是命令标志.   一些重要概念: LV(Logical Volume)- 逻辑卷, VG(Volumne Group)- 卷组, P ...

  2. mysql,oracle表数据相互导入

    mysql导入oracle: 例如mysql中有ts_user_info表,现在要导入到oracle中的user_info表 1:导出mysql表数据到data.txt文件 mysql> sel ...

  3. ethereum(以太坊)(九)--global(全局函数)

    pragma solidity ^0.4.0; contract modifierTest{ bytes32 public blockhash; address public coinbase; ui ...

  4. 内置函数系列之 filter

    filter 过滤 基本语法: s = filter(function,iterable) 将可迭代对象的每一个元素,传进函数中,根据函数中的判断条件,返回True或False 返回True的是保留的 ...

  5. oauth2.0协议接口-第一篇-api逻辑

    开放平台是支持OAuth2.0和RESTful协议的资源分享平台,经过授权的合作伙伴可以读取和写入资讯.用户.文件.数据库等资源. 1.创建数据库表结构 CMSSyncClient(数据同步客户端) ...

  6. Python 中关于文件操作的注意事项

    文件操作 #打开文件 f = open('要打开的文件路径',mode = 'r/w/a', encoding = '文件原来写入时的编码') #操作 data = f.read() #读取 f.wr ...

  7. 霍夫直线检测 opencv

    本次实验是检测图像中的直线,用到了HoughLines()和HoughLinesP()函数,其中HoughLinesP()称为累计概率霍夫变换,实验结果显示累计概率霍夫变换要比标准霍夫变换的效果好.具 ...

  8. [Hdu4825]Xor Sum(01字典树)

    Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包含了N个正整数,随后 Prometheus 将向 Zeus 发起M次询问 ...

  9. rpm、yum命令

    一.rpm命令 挂载光盘文件到/media目录: 进去/media目录下的Packages目录: 查看系统已安装的所有rpm包: 查看系统是否安装dhcp软件包: 安装dhcp软件包: 查看dhcp软 ...

  10. Flume是什么

    分布式流式实时收集日志文件系统,便于实时在线的流式计算,常配合 Storm 和 spark streming 使用. Flume is a distributed分布式的, reliable可靠的, ...