【BZOJ3143】[Hnoi2013]游走

Description

一个无向连通图,顶点从1编号到N,边从1编号到M。 
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

Input

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

Output

仅包含一个实数,表示最小的期望值,保留3位小数。

Sample Input

3 3
2 3
1 2
1 3

Sample Output

3.333

HINT

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。

题解:一个清晰的思路:我们如果能求出每条边期望被经过的次数,然后排个序,让期望次数越大的边的编号越小就行了。但是问题来了,点数500,边数?????,以边为变量跑高斯消元显然会TLE,那么我们只能以点为变量跑高斯消元。那么如何用点的期望表示边的期望呢?其实很简单,设边(a,b),点a的期望被经过次数是f[a],点b的是f[b],a的度数是d[a],b的是d[b],那么这条边的期望被经过次数显然是${f[a]\over d[a]}+{f[b]\over d[b]}$。

然后就是老办法了,如果存在边(a,b),那就f[a]+=f[b]/d[b],处理出来再移项即可,直接上高斯消元。

别忘了f[n]=1,f[1]要+1(因为是起始点)

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long double ld;
int n,m;
int pa[130000],pb[130000],d[510];
ld pc[130000],v[510][510],ans;
void add(int a,int b)
{
if(a==n) return ;
v[b][a]-=(ld)1/d[a];
}
int main()
{
scanf("%d%d",&n,&m);
int i,j,k;
for(i=1;i<=m;i++) scanf("%d%d",&pa[i],&pb[i]),d[pa[i]]++,d[pb[i]]++;
for(i=1;i<=m;i++) add(pa[i],pb[i]),add(pb[i],pa[i]);
for(i=1;i<=n;i++) v[i][i]+=1;
for(i=1;i<=n+1;i++) v[n][i]=0;
v[n][n]=v[n][n+1]=1,v[1][n+1]+=1;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++) if(fabs(v[j][i])>fabs(v[i][i])) for(k=i;k<=n+1;k++) swap(v[i][k],v[j][k]);
if(fabs(v[i][i])<1e-7) continue;
for(j=n+1;j>=i;j--) v[i][j]/=v[i][i];
for(j=1;j<=n;j++) if(i!=j)
{
for(k=1;k<=n+1;k++) if(i!=k) v[j][k]-=v[j][i]*v[i][k];
v[j][i]=0;
}
}
for(i=1;i<=m;i++)
{
if(pa[i]!=n&&fabs(v[pa[i]][pa[i]])>1e-7) pc[i]+=v[pa[i]][n+1]/d[pa[i]];
if(pb[i]!=n&&fabs(v[pb[i]][pb[i]])>1e-7) pc[i]+=v[pb[i]][n+1]/d[pb[i]];
}
sort(pc+1,pc+m+1);
for(i=1;i<=m;i++) ans+=(m-i+1)*pc[i];
printf("%.3lf",(double)ans);
return 0;
}

【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元的更多相关文章

  1. BZOJ3143: [Hnoi2013]游走(期望DP 高斯消元)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3597  Solved: 1618[Submit][Status][Discuss] Descript ...

  2. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  3. 2018.09.23 bzoj3143: [Hnoi2013]游走(dp+高斯消元)

    传送门 显然只需要求出所有边被经过的期望次数,然后贪心把边权小的边定城大的编号. 所以如何求出所有边被经过的期望次数? 显然这只跟边连接的两个点有关. 于是我们只需要求出两个点被经过的期望次数. 对于 ...

  4. bzoj3143 游走 期望dp+高斯消元

    题目传送门 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得 ...

  5. bzoj3143: [Hnoi2013]游走(贪心+高斯消元)

    考虑让总期望最小,那么就是期望经过次数越多的边贪心地给它越小的编号. 怎么求每条边的期望经过次数呢?边不大好算,我们考虑计算每个点的期望经过次数f[x],那么一条边的期望经过次数就是f[x]/d[x] ...

  6. BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  7. 【洛谷3232】[HNOI2013] 游走(贪心+高斯消元)

    点此看题面 大致题意: 一个无向连通图,小\(Z\)从\(1\)号顶点出发,每次随机选择某条边走到下一个顶点,并将\(ans\)加上这条边的编号,走到\(N\)号顶点时结束.请你对边进行编号,使总分期 ...

  8. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  9. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

随机推荐

  1. Tomcat:Java Web服务器配置详解

    一.Tomcat概述 1.tomcat简介 tomcat是基于JDK的web服务器,其能运行Servlet和JSP规范总.Tomcat 5支持最新的Servlet 2.4 和JSP 2.0规范.实际上 ...

  2. BindDepthStencilState

    nx sdk里面有这么一个接口 真坑 对于stencil fun op有两组值分别对应front back face 现在调用这个接口只能设置back 不能设置front跟了memory 有段全是0把 ...

  3. 《深入理解Android 卷III》第二章 深入理解Java Binder和MessageQueue

    <深入理解Android 卷III>即将公布.作者是张大伟.此书填补了深入理解Android Framework卷中的一个主要空白,即Android Framework中和UI相关的部分. ...

  4. java学习笔记——大数据操作类

    java.math包中提供了两个大数字操作类:BigInteger(大整数操作类) BigDecimal(大小数操作类). 大整数操作类:BigInteger BigInteger类构造方法:publ ...

  5. 排查 “Detected Tx Unit Hang”问题

    实现功能: 使用自己已经分配的内存让skb->data指向,而不是使用alloc_malloc(). 部分代码如下: /* * build a new sk_buff */ //struct s ...

  6. redux VS mobx (装饰器配合使用)

    前言:redux和mobx都是状态管理器,避免父级到子级再到子子级嵌套单向数据流,可以逻辑清晰的管理更新共享数据.(刷新页面redux储蓄数据即消失) 配置使用装饰器(使用高阶函数包装你的组件): n ...

  7. 重启nginx后丢失nginx.pid的解决方法(转)

    一,nginx的停止操作 停止操作是通过向nginx进程发送信号来实现的.步骤1:查询nginx主进程号 ps -ef | grep nginx 在进程列表里 面找master进程,它的编号就是主进程 ...

  8. cocos2d-x 3.0 回调函数

    參考文章: http://blog.csdn.net/crayondeng/article/details/18767407 http://blog.csdn.net/star530/article/ ...

  9. MySQL中创建用户分配权限

    测试环境:CentOS6.8 和 MySQL5.5.4 一 需求 在项目开发的过程中可能需要开放自己的数据库给别人,但是出于安全的考虑,不能同时开放自己服务器里的其他数据库.那么可以新建一个用户,赋予 ...

  10. 无法将“Update-Database”项识别为 cmdlet、函数、脚本文件或可运行程序的名称的问题

    原因: 没有引用EntityFramework命令 解决: 在程序包管理器控制台执行如下命令:Import-Module 项目路径\packages\EntityFramework.6.1.3(EF版 ...