BZOJ4001 [TJOI2015]概率论 【生成函数】
题目链接
题解
Miskcoo
太神了,orz
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
double n;
int main(){
cin >> n;
printf("%.9lf",n * (n + 1) / (2 * (2 * n - 1)));
return 0;
}
BZOJ4001 [TJOI2015]概率论 【生成函数】的更多相关文章
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
- 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)
传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...
- 【bzoj4001】[TJOI2015]概率论 生成函数+导数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 题解 生成函数+导数 先考虑节点个数为$n ...
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- [TJOI2015]概率论
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...
随机推荐
- tomcat8080端口占用解决办法
打开控制台,在窗口中输入指令:netstat -ano | findstr 8080 指令的意思是找出占用8080端口的进程pid 上图中表示占用进程pid为23288,然后再次输入指令: ...
- Spring Cloud 入门Eureka -Consumer服务消费(声明式Feign)(三)
Spring Cloud Feign是一套基于Netflix Feign实现的声明式服务调用客户端.它使得编写Web服务客户端变得更加简单.我们只需要通过创建接口并用注解来配置它既可完成对Web服务接 ...
- scrapy--dytt(电影天堂)
喜欢看电影的小伙伴,如果想看新的电影,然后没去看电影院看,没有正确的获得好的方法,大家就可以在电影天堂里进行下载.这里给大家提供一种思路. 1.dytt.py # -*- coding: utf-8 ...
- 2.1 <script>元素【JavaScript高级程序设计第三版】
向 HTML 页面中插入 JavaScript 的主要方法,就是使用<script>元素.这个元素由 Netscape 创造并在 Netscape Navigator 2 中首先实现.后来 ...
- yii2 url 美化参数
所谓的url参数美化就是将冗长的字符串 进行正则替换 yii2 框架的url参数美化完成需要完成两个阶段 第一个阶段分apache和nginx 两种的配置 apache :1.1 必须开启rewrit ...
- <Docker学习>4. docker容器的使用
简单的说, 容器是独立运行的一个或一组应用, 以及它们的运行态环境. 对应的, 虚拟机可以理解为模拟运行的一整套操作系统( 提供了运行态环境和其他系统环境) 和跑在上面的应用.容器的运行是基于镜像的. ...
- busybox编译 fatal error: curses.h: 没有那个文件或目录解决办法
执行make menuconfig时出现如下错误@ubuntu:/home/dev/busybox-1.19.3# make menuconfig HOSTCC scripts/kconfig/lxd ...
- HyperLedger Fabric ca 1.2 正式环境部署
生成一个根CA(RootCA),在根CA下3个中间CA(IntermediaCA). 1. 运行和配置RootCA服务#cd /opt/gopath/src/github.com/hyperledge ...
- Android 渗透小知识点
客户端用于 ADB 通信的默认端口始终是 5037,设备使用从 5555 到 5585 的端口 adb devices用于显示所有已连接设备, 有时候会出现一些问题, 这时候需要使用adb kill- ...
- PHP.35-TP框架商城应用实例-后台11-商品分类-删除分类(2种方法)、添加、修改
删除分类 删除一个分类的同时,其所有子分类都删除 在控制器CategoryCtroller.class.php中添加删除函数(delete) 在分类模型中添加钩子函数_before_delete()[ ...