[洛谷P3321][SDOI2015]序列统计
题目大意:给你一个集合$n,m,x,S(S_i\in(0,m],m\leqslant 8000,m\in \rm{prime},n\leqslant10^9)$,求一个长度为$n$的序列$Q$,满足$Q_i\in S$,且$\prod\limits _{i=1}^nQ_i=x$,求序列的个数
题解:乘比较麻烦,可以把每个数求$\ln$,可以求出$m$的原根,求原根可以暴力$O(m^2)$求,然后每个数求$\ln$,求出生成函数$F(x)$,算出$F^n(x)$。发现$n$较大,多项式快速幂即可。
卡点:无
C++ Code:
#include <cstdio>
#include <algorithm>
#include <cstring>
#define maxn 16384 | 3
#define maxm 8010
const int mod = 1004535809, G = 3;
int n, m, x, S, g;
int vis[maxm];
int get(int m) {
bool find = false;
for (int i = 2; i < m; i++) {
memset(vis, -1, sizeof vis);
int t = 1;
vis[1] = 0;
for (int j = 1; j < m - 1; j++) {
t = t * i % m;
if (~vis[t]) break;
else vis[t] = j;
if (j == m - 2) find = true;
}
if (find) return i;
}
return 20040826;
}
int lim, ilim, s, rev[maxn];
int base[maxn], ans[maxn], Wn[maxn + 1];
inline int pw(int base, int p) {
int res = 1;
for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) res = 1ll * res * base % mod;
return res;
}
inline int Inv(int x) {return pw(x, mod - 2);}
inline void init(int n) {
lim = 1, s = -1; while (lim < n) lim <<= 1, s++; ilim = Inv(lim);
for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
int t = pw(G, (mod - 1) / lim);
Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * t % mod;
}
inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
inline void NTT(int *A, int op) {
for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (int mid = 1; mid < lim; mid <<= 1) {
int t = lim / mid >> 1;
for (int i = 0; i < lim; i += mid << 1) {
for (int j = 0; j < mid; j++) {
int W = op ? Wn[j * t] : Wn[lim - j * t];
int X = A[i + j], Y = 1ll * A[i + j + mid] * W % mod;
up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
}
}
}
if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
}
int C[maxn], D[maxn];
inline void MUL(int *A, int *B) {
for (int i = 0; i < lim; i++) C[i] = A[i], D[i] = B[i];
NTT(C, 1), NTT(D, 1);
for (int i = 0; i < lim; i++) C[i] = 1ll * C[i] * D[i] % mod;
NTT(C, 0);
for (int i = 0; i < lim; i++) A[i] = C[i];
for (int i = m - 1; i < lim; i++) (A[i % (m - 1)] += A[i]) %= mod, A[i] = 0;
}
int main() {
scanf("%d%d%d%d", &n, &m, &x, &S);
g = get(m);
for (int i = 0, tmp; i < S; i++) {
scanf("%d", &tmp);
if (tmp) base[vis[tmp]] = 1;
}
init(m << 1);
ans[0] = 1;
for (; n; n >>= 1, MUL(base, base)) if (n & 1) MUL(ans, base);
printf("%d\n", ans[vis[x]]);
return 0;
}
[洛谷P3321][SDOI2015]序列统计的更多相关文章
- 洛谷P3321 [SDOI2015]序列统计(NTT)
传送门 题意:$a_i\in S$,求$\prod_{i=1}^na_i\equiv x\pmod{m}$的方案数 这题目太珂怕了……数学渣渣有点害怕……kelin大佬TQL 设$f[i][j]$表示 ...
- 洛咕 P3321 [SDOI2015]序列统计
显然dp就是设\(f[i][j]\)表示dp了i轮,对m取膜是j的方案数 \(f[i][xy\mod m]=f[i-1][x]\times f[i-1][y]\) 这是\(O(nm^2)\)的 像我这 ...
- 洛谷3321 SDOI2015 序列统计
懒得放传送[大雾 有趣的一道题 前几天刚好听到Creed_神犇讲到相乘转原根变成卷积的形式 看到这道题当然就会做了啊w 对于m很小 我们暴力找原根 如果你不会找原根的话 出门左转百度qwq 找到原根以 ...
- P3321 [SDOI2015]序列统计 FFT+快速幂+原根
\(\color{#0066ff}{ 题目描述 }\) 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这 ...
- P3321 [SDOI2015]序列统计
思路 首先有个挺显然的DP \[ dp[i][(j*k)\%m]+=dp[i-1][j]\times dp[i-1][k] \] 想办法优化这个DP 这个dp也可以写成这样 \[ dp[i][j]=\ ...
- Luogu P3321 [SDOI2015]序列统计
一道不错的多项式好题.还涉及了一些数论内容. 首先我们看到题目是求乘积模\(m\)的方案数,考虑到这种方案数我们一般都可以用生成函数来做. 但显然卷积的下标有加(FFT,NTT等)有位运算(FWT)但 ...
- 【LG3321】[SDOI2015]序列统计
[LG3321][SDOI2015]序列统计 题面 洛谷 题解 前置芝士:原根 我们先看一下对于一个数\(p\),它的原根\(g\)有什么性质(好像就是定义): \(g^0\%p,g^1\%p,g^2 ...
- BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1017 Solved: 466[Submit][Statu ...
- [SDOI2015]序列统计
[SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...
随机推荐
- 关于js的严格模式
最近在看你不知道js,补充自己的js基础,加深理解.在读的过程中写点笔记. 严格模式下与非严格模式的区别 . 严格模式是es5新增的,es6是默认为严格模式的!js默认状态下是非严格模式的! 一般 ...
- web攻击技术与防护
一.跨站脚本攻击(XSS) 跨站脚本攻击是指通过存在安全漏洞的Web网站注册用户的浏览器运行非法的HTML标签或JavaScript进行的一种攻击.动态创建的HTML部分有可能隐藏着安全漏洞.就这样, ...
- 自定义扩展Compare比较方法
public static int Compare<T, V>(this T x, T y, Func<T, V> func) { return Comparer<V&g ...
- 大数据学习(一) | 初识 Hadoop
作者: seriouszyx 首发地址:https://seriouszyx.top/ 代码均可在 Github 上找到(求Star) 最近想要了解一些前沿技术,不能一门心思眼中只有 web,因为我目 ...
- 神经网络系列学习笔记(四)——神经网络之RNN学习笔记
不同于传统的FNNs(Feed-forward Neural Networks,前向反馈神经网络),RNNs引入了定向循环,能够处理那些输入之间前后关联的问题. RNNs的目的是用来处理序列数据. 具 ...
- MySQL 获取物理表的主键字段
参考代码: /** * 获取主键字段 * @param $table * @param $database * @return mixed */ public function get_primary ...
- 通信服务器哈希Socket查找(Delphi)
在Socket通信服务器的开发中,我们经常会需要Socket与某个结构体指针进行绑定.当连接量很大时,意味着需要个高效的查找方法 Delphi中提供了哈希算法类,以此类为基础,修改出Socket专用M ...
- Multiplication Puzzle ZOJ - 1602
Multiplication Puzzle ZOJ - 1602 传送门 The multiplication puzzle is played with a row of cards, each c ...
- Struts2---配置文件讲解及简单登录示例
bean 用于创建一个JavaBean实例 constant 用于Struts2默认行为标签 <!-- 配置web默认编码集,相当于HttpServletRequest.setChartacte ...
- SpringMVC集成RSA加密算法
技术交流群: 233513714 本文介绍的是RSA加密算法+Spring Security在SpringMVC中的集成使用. Spring Security是什么? 引用: Spring Secur ...