P1439 排列LCS问题

题目描述

给出1-n的两个排列P1和P2,求它们的最长公共子序列。

输入输出格式

输入格式:

第一行是一个数n,

接下来两行,每行为n个数,为自然数1-n的一个排列。

输出格式:

一个数,即最长公共子序列的长度

输入输出样例

输入样例#1:

5
3 2 1 4 5
1 2 3 4 5
输出样例#1:

3

说明

【数据规模】

对于50%的数据,n≤1000

对于100%的数据,n≤100000

/*
看到10W的规模,大致可以断定此题应该用O(nlogn)的解法,朴素的LCS算法时间复杂度为O(n^2),明显不可行。
首先简化一下问题,假设P1恰好为单调递增的1,2,3,...n,那么很显然答案就是P2的最长上升子序列的长度(想一想,为什么?)
问题是P1并非单调递增的,但我们可以假定它就是1,2,3,...,n,将P1[1]映射到1,P1[2]映射到2,……然后再将P2作相同的变换即可,这样只要求P2的最长上升子序列了。
最长上升子序列是有O(nlogn)算法的,大致过程如下:
建立栈a,每读入一个元素x,若x比栈顶元素大则x进栈,否则在栈中二分找到第一个大于x的元素a[k],并用x替换它,做完以后栈的大小就是序列的最长上升子序列的长度。
*/
#include<iostream>
#include<cstdio>
#define maxn 100010
using namespace std;
int n,a[maxn],b[maxn],top,st[maxn];
int main(){
scanf("%d",&n);
int x;
for(int i=;i<=n;i++){
scanf("%d",&x);
a[x]=i;
}
for(int i=;i<=n;i++){
scanf("%d",&x);
b[i]=a[x];
}
st[++top]=b[];
for(int i=;i<=n;i++){
if(b[i]>st[top])st[++top]=b[i];
else {
int l=,r=top,pos;
while(l<=r){
int mid=(l+r)>>;
if(st[mid]>=b[i])pos=mid,r=mid-;
else l=mid+;
}
st[pos]=b[i];
}
}
printf("%d",top);
}

洛谷P1439 排列LCS问题的更多相关文章

  1. 洛谷1439 排列LCS问题

    洛谷1439 排列LCS问题 本题地址:http://www.luogu.org/problem/show?pid=1439 题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输 ...

  2. 洛谷 P1439 【模板】最长公共子序列

    \[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...

  3. P1439 排列LCS问题

    P1439 排列LCS问题 56通过 220提交 题目提供者yeszy 标签二分动态规划 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 暂时没有讨论 题目描述 给出1-n的两个排列P1和P2 ...

  4. 最长公共子序列问题(LCS) 洛谷 P1439

    题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn ...

  5. 洛谷 P1439 【模板】最长公共子序列LCS 解题报告

    题目传送门 是一道十分经典的LCS问题 很容易想到  的一般算法:主题代码如下: for (int i = 1; i <= n; i++) for (int j = 1; j <= n; ...

  6. 洛谷P1439 最长公共子序列(LCS问题)

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...

  7. 洛谷 [p1439] 最长公共子序列 (NlogN)

    可以发现只有当两个序列中都没有重复元素时(1-n的排列)此种优化才是高效的,不然可能很不稳定. 求a[] 与b[]中的LCS 通过记录lis[i]表示a[i]在b[]中的位置,将LCS问题转化为最长上 ...

  8. 洛谷P1439 【模板】最长公共子序列

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...

  9. 洛谷 P1439 【模板】最长公共子序列 题解

    每日一题 day40 打卡 Analysis 因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来 ...

随机推荐

  1. Java for LeetCode 131 Palindrome Partitioning

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  2. HDU4825 Xor Sum —— Trie树

    题目链接:https://vjudge.net/problem/HDU-4825 Xor Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Li ...

  3. iOS Assertion failure in -[UITableView _classicHeightForRowAtIndexPath:]

    Assertion failure in -[UITableView _classicHeightForRowAtIndexPath:], /SourceCache/UIKit_Sim/UIKit-3 ...

  4. YYYY-mm-dd HH:MM:SS 备忘录

    d 月中的某一天.一位数的日期没有前导零. dd 月中的某一天.一位数的日期有一个前导零. ddd 周中某天的缩写名称,在 AbbreviatedDayNames 中定义. dddd 周中某天的完整名 ...

  5. Ice php配置

    1) Removed the php extension directories and recompiled apache/PHP2) Rebooted the machine.3) I remov ...

  6. Could not load the "xxx.png" image referenced from a nib in the bundle with identifier "com.xxxx"

    打印台logs:  Could not load the "xxx.png" image referenced from a nib in the bundle with iden ...

  7. 自己实现的vector

    #include <iostream> #include <memory> using std::cout; using std::endl; using std::alloc ...

  8. Ubuntu环境下对拍

    何为对拍 假设我在考场上写了一个能过样例的算法.然后它也能过大样例但是我觉得有些担心某些细节会出错,或者是它连大样例都过不了但是大样例过大无法肉眼差错,这个时候我们就需要对拍了. 所谓对拍,就是对着拍 ...

  9. 洛谷 P3804 [模板] 后缀自动机

    题目:https://www.luogu.org/problemnew/show/P3804 模仿了一篇题解,感觉很好写啊. 代码如下: #include<cstdio> #include ...

  10. JAVA,MYSQL,ORACLE的数据类型对比

    MySQL Data Type Oracle Data Type Java BIGINT NUMBER(19, 0) java.lang.Long BIT RAW byte[] BLOB BLOB,  ...