相关分析

【问题描述】

Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度、颜色等等,进而估算出星星的距离,半径等等。Frank不仅喜欢观测,还喜欢分析观测到的数据。他经常分析两个参数之间(比如亮度和半径)是否存在某种关系。现在Frank要分析参数X与Y之间的关系。他有n组观测数据,第i组观测数据记录了x_i和y_i。他需要一下几种操作1 L,R:用直线拟合第L组到底R组观测数据。用xx表示这些观测数据中x的平均数,用yy表示这些观测数据中y的平均数,即
xx=Σx_i/(R-L+1)(L<=i<=R)
yy=Σy_i/(R-L+1)(L<=i<=R)
如果直线方程是y=ax+b,那么a应当这样计算:
a=(Σ(x_i-xx)(y_i-yy))/(Σ(x_i-xx)(x_i-xx)) (L<=i<=R)
你需要帮助Frank计算a。
2 L,R,S,T:
Frank发现测量数据第L组到底R组数据有误差,对每个i满足L <= i <= R,x_i需要加上S,y_i需要加上T。
3 L,R,S,T:
Frank发现第L组到第R组数据需要修改,对于每个i满足L <= i <= R,x_i需要修改为(S+i),y_i需要修改为(T+i)。

【输入格式】

第一行两个数n,m,表示观测数据组数和操作次数。
接下来一行n个数,第i个数是x_i。
接下来一行n个数,第i个数是y_i。
接下来m行,表示操作,格式见题目描述。
1<=n,m<=10^5,0<=|S|,|T|,|x_i|,|y_i|<=10^5
保证1操作不会出现分母为0的情况。

【输出格式】

对于每个1操作,输出一行,表示直线斜率a。

选手输出与标准输出的绝对误差不超过10^-5即为正确。

【样例输入】

3 5
1 2 3
1 2 3
1 1 3
2 2 3 -3 2
1 1 2
3 1 2 2 1
1 1 3

【样例输出】

1.0000000000
-1.5000000000
-0.6153846154


题解:

对于线性回归方程我们把它拆分,x平方和,x权值和,y权值和,xy权值和,x平方和

第二个第三个操作用初中学的完全平方公式拆一拆就好了

记得爆 long long MMP

 #include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
inline void Scan(int &x)
{
char c;
bool o = false;
while(!isdigit(c = getchar()))
if(c == '-')
o = true;
x = c - '';
while(isdigit(c = getchar()))
x = x * + c - '';
if(o) x = -x;
}
const int maxn = 1e5 + ;
const int maxs = maxn << ;
struct ele
{
long long x, y;
double xy, sx;
inline void print()
{
printf("%lf %lf %lf %lf\n", (double) x, (double) y, (double) xy, (double) sx);
}
inline void empty()
{
x = y = xy = sx = ;
}
};
struct tag
{
long long s, t;
inline bool exist()
{
return s || t;
}
inline void empty()
{
s = t = ;
}
};
tag mark[maxs], sign[maxs];
ele ans, add;
ele tr[maxs];
int n, m;
int x[maxn], y[maxn];
double sum[maxn];
inline ele operator + (ele a, ele b)
{
return (ele) {a.x + b.x, a.y + b.y, a.xy + b.xy, a.sx + b.sx};
}
inline tag operator + (tag a, tag b)
{
return (tag) {a.s + b.s, a.t + b.t};
}
void Build(int k, int l, int r)
{
if(l == r)
{
tr[k] = (ele) {x[l], y[l], (double) x[l] * y[l], (double) x[l] * x[l]};
return;
}
int mi = l + r >> ;
int lc = k << , rc = k << | ;
Build(lc, l, mi), Build(rc, mi + , r);
tr[k] = tr[lc] + tr[rc];
}
inline void Add(int k, int n, long long s, long long t)
{
long long x, y;
double xy, sx;
x = n * s;
y = n * t;
xy = (double) s * tr[k].y + (double) t * tr[k].x + (double) n * s * t;
sx = (double) n * s * s + * s * (double) tr[k].x;
add = (ele) {x, y, xy, sx};
tr[k] = tr[k] + add;
mark[k] = mark[k] + (tag) {s, t};
}
inline long long Sum(long long l, long long r, int n)
{
return (l + r) * n / ;
}
inline void Change(int k, double s, double t, int l, int r)
{
int n = r - l + ;
double x, y, xy, sx;
x = Sum(s + l, s + r, n);
y = Sum(t + l, t + r, n);
xy = (double) n * s * t + (double) (s + t) * Sum(l, r, n) + sum[r] - sum[l - ];
sx = (double) n * s * s + sum[r] - sum[l - ] + (double) * s * Sum(l, r, n);
tr[k] = (ele) {x, y, xy, sx};
sign[k] = (tag) {s, t};
mark[k].empty();
}
inline void Down(int k, int l, int r)
{
int lc = k << , rc = k << | ;
int mi = l + r >> ;
double s, t;
if(sign[k].exist())
{
s = sign[k].s, t = sign[k].t;
Change(lc, s, t, l, mi), Change(rc, s, t, mi + , r);
sign[k].empty();
}
if(mark[k].exist())
{
s = mark[k].s, t = mark[k].t;
Add(lc, mi - l + , s, t), Add(rc, r - mi, s, t);
mark[k].empty();
}
}
void Query(int k, int l, int r, int x, int y)
{
if(x <= l && r <= y)
{
ans = ans + tr[k];
return;
}
Down(k, l, r);
int mi = l + r >> ;
if(x <= mi) Query(k << , l, mi, x, y);
if(y > mi) Query(k << | , mi + , r, x, y);
}
void Insert(int k, int l, int r, int x, int y, int s, int t)
{
if(x <= l && r <= y)
{
Add(k, r - l + , s, t);
return;
}
Down(k, l, r);
int mi = l + r >> ;
int lc = k << , rc = k << | ;
if(x <= mi) Insert(lc, l, mi, x, y, s, t);
if(y > mi) Insert(rc, mi + , r, x, y, s, t);
tr[k] = tr[lc] + tr[rc];
}
void Modify(int k, int l, int r, int x, int y, int s, int t)
{
if(x <= l && r <= y)
{
Change(k, s, t, l, r);
return;
}
Down(k, l, r);
int mi = l + r >> ;
int lc = k << , rc = k << | ;
if(x <= mi) Modify(lc, l, mi, x, y, s, t);
if(y > mi) Modify(rc, mi + , r, x, y, s, t);
tr[k] = tr[lc] + tr[rc];
}
int main()
{
Scan(n), Scan(m);
for(int i = ; i <= n; ++i) Scan(x[i]);
for(int i = ; i <= n; ++i) Scan(y[i]);
for(int i = ; i <= n; ++i) sum[i] = sum[i - ] + (double) i * i;
Build(, , n);
int o, x, y, s, t;
int len;
long long meanx;
long double up, down, meany;
while(m--)
{
Scan(o), Scan(x), Scan(y);
switch(o)
{
case :
{
ans.empty();
Query(, , n, x, y);
len = y - x + ;
meanx = ans.x;
meany = (double) ans.y / len;
up = ans.xy - meanx * meany;
down = ans.sx - (double) meanx * meanx / len;
double answer = up / down;
printf("%.10lf\n", answer);
break;
}
case :
{
Scan(s), Scan(t);
Insert(, , n, x, y, s, t);
break;
}
case :
{
Scan(s), Scan(t);
Modify(, , n, x, y, s, t);
break;
}
}
}
}

相关分析 BZOJ 4821的更多相关文章

  1. (WA)BZOJ 4821: [Sdoi2017]相关分析

    二次联通门 : BZOJ 4821: [Sdoi2017]相关分析 2017.8.23 Updata 妈妈!!这道题卡我!!!就是不然我过!!!!! #include <cstdio> # ...

  2. ●BZOJ 4821 [Sdoi2017]相关分析

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4821 题解: 线段树是真的恶心,(也许是我的方法麻烦了一些吧)首先那个式子可以做如下化简: ...

  3. BZOJ.4821.[SDOI2017]相关分析(线段树)

    BZOJ LOJ 洛谷 恶心的拆式子..然后就是要维护\(\sum x_i,\ \sum y_i,\ \sum x_iy_i,\ \sum x_i^2\). 操作三可以看成初始化一遍,然后同操作二. ...

  4. bzoj 4821 [Sdoi2017]相关分析

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4821 题解 做法显然 就是维护一颗线段树 里面装4个东西 区间x的和 区间y的和 区间$x^ ...

  5. BZOJ 4821 [Sdoi2017]相关分析 ——线段树

    打开题面,看到许多$\sum$ woc,好神啊,SDOI好强啊 然后展开之后,woc,SDOI好弱啊,怎么T3出个线段树裸题啊. 最后写代码的时候,woc,SDOI怎么出个这么码农的题啊,怎么调啊. ...

  6. BZOJ 4821: [Sdoi2017]相关分析 线段树 + 卡精

    考试的时候切掉了,然而卡精 + 有一个地方忘开 $long long$,完美挂掉 $50$pts. 把式子化简一下,然后直接拿线段树来维护即可. Code: // luogu-judger-enabl ...

  7. BZOJ 4821 (luogu 3707)(全网最简洁的代码实现之一)

    题面 传送门 分析 计算的部分其他博客已经写的很清楚了,本博客主要提供一个简洁的实现方法 尤其是pushdown函数写得很简洁 代码 #include<iostream> #include ...

  8. 4821: [Sdoi2017]相关分析

    4821: [Sdoi2017]相关分析 链接 分析: 大力拆式子,化简,然后线段树.注意精度问题与爆longlong问题. 代码: #include<cstdio> #include&l ...

  9. BZOJ4817 SDOI2017 相关分析

    4821: [Sdoi2017]相关分析 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special Judge Description Frank对天文 ...

随机推荐

  1. MHA

    MHA 1. MHA简介 1.1 MHA工作原理总结为如下 1.2 MHA工具包介绍 2. 部署MHA 2.1 环境介绍 2.2 一主两从复制搭建 2.3 配置互信 2.4 下载MHA 2.5 安装M ...

  2. ipmitool的使用

    https://www.ibm.com/developerworks/cn/linux/l-ipmi/index.html

  3. webpack4搭建Vue开发环境笔记~~持续更新

    项目git地址 一.node知识 __dirname: 获取当前文件所在路径,等同于path.dirname(__filename) console.log(__dirname); // Prints ...

  4. IIS7.0/8.0的错误HTTP Error 500.19 - Internal Server Error ,错误代码为0x80070021

    最近在部署项目的时候,总是出现了这个问题. 大概原因为IIS7.0的安全设定相比前版本有很大的变更.IIS7.0的安全设置文件在%windir%\system32\inetsrv \config\ap ...

  5. 【android】【android studio】修改emulator的本地化环境

    Changing the emulator locale from the adb shell To change the locale in the emulator by using the ad ...

  6. 多线程之volatile关键字(五)

    开始全文之前,先铺垫一下jvm基础知识以及线程栈: JVM栈是线程私有的,每个线程创建的同时都会创建JVM栈,JVM栈中存放的为当前线程中局部基本类型的变量(java中定义的八种基本类型:boolea ...

  7. goalng导出excel(csv格式)

    最近项目中有个小需求,需要将查询结果导出到excel.之间前java比较容易,使用POI很容易就能实现,查了下golang的文档,发现golang下边并没有导出excel的包,但是却有一个encodi ...

  8. jubeeeeeat(网络流)

    jubeeeeeat 总时间限制:  1000ms 内存限制:  256000kB 描述 众所周知,LZF很喜欢打一个叫Jubeat的游戏.这是个音乐游戏,游戏界面是4×4的方阵,会根据音乐节奏要求玩 ...

  9. poj 3107 Godfather(树的重心)

    Godfather Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7885   Accepted: 2786 Descrip ...

  10. day18-socket 编程

    1.Socket是网络上的使用的交互信息得方法,也叫套接字 用于描述IP地址和端口,是一个通信链的句柄,应用程序通常通过"套接字"向网络发出请求或者应答网络请求. 通讯原理 Soc ...