一直想抽个时间整理下最近的所学,断断续续接触hive也有半个多月了,大体上了解了很多Hive相关的知识。那么,一般对陌生事物的认知都会经历下面几个阶段:

  • 为什么会出现?解决了什么问题?
  • 如何搭建?如何使用?
  • 如何精通?

我会在本篇粗略的介绍下前两个问题,然后给一些相关的资料。第三个问题,就得慢慢靠实践和时间积累了。

如果有什么问题,可以直接留言!

为什么出现?解决了什么问题?

背景

说到这个问题,还得先说个小故事,在很久很久以前....

有一个叫facebook的贼有名的公司,他们内部搭建了数据仓库(你可以理解成把一大堆数据放到一个地方,然后做报表给老板看!),是基于mysql的。后来随着数据量的不断增加,这种传统的数据库扛不住了...于是经过一系列的折腾换到了hadoop上(hadoop是个大数据体系,用的是里面的hdfs,做存储的。你可以理解成搞一堆破烂机器凑成个集群,然后存储超级多的数据)。

问题来了!

以前基于数据库的数据仓库用sql就能做查询,现在换到hdfs上面,得跑Mapreduce任务去做分析,这样以前做分析的人还得学mapreduce,好难呀!

于是...他们就开发了一套框架就是用sql来做hdfs的查询(用户输入的是sql,框架内部把sql转成mapreduce的任务,然后再去跑分析)。

于是,Hive诞生了...看看上面同样是wordcount,mapreduce和hive的区别,能看到效果了吧。

解决的问题

Hive基于类似SQL的语言完成对hdfs数据的查询分析。

那么它到底做了什么呢?

  • 1 它支持各种命令,比如dfs的命令、脚本的执行
  • 2 如果你输入的是sql,它会交给一个叫做Driver的东东,去编译解析。
  • 3 把编译出来的东西交给hadoop去跑...然后返回查询结果。

说了这么多,其实你就可以把hive理解成搭建在hadoop(hdfs和mapreduce)之上的语言壳子...

如何搭建?如何使用?

搭建的可以参考这篇,感觉已经写的很详细了

学习如何使用Hive还是个很重要的部分的!这里就不详细的说了,都举个小例子,具体的还是去撸官网吧!

创建

在Hive里面创建表和在普通的数据库中创建表示类似的,都是先创建(或者使用默认的)数据库,然后创建表。

create database xxx; -- 创建数据库
use xxx; --使用数据库
create table student(id string,name string,age int); --创建表

导入导出数据

数据的导入最常用的就是从hdfs的文件导入或者本地文件导入,也可以从某个查询结果直接创建或者导入。

Hive还支持把查询结果导出到文件...

数据的导入导出参考这篇文章,写的很详细了

查询

最普通的查询,就是select from句式了,Hive还是做得比较通用的

--普通查询
select * from xxx;
--带条件的查询
select * from xxx where age>30;
--限制返回列
select name,age from xxx;
--内连接
select a.*,b.* from tablea a join tableb b on a.id=b.sid;
--左连接
select * from a left outer join b on a.id=b.sid;
--右连接
select * from a right outer join b on a.id=b.sid;

函数

Hive支持一大堆的函数,比如普通的函数UDF:

floor、ceil、rand、cast等等

还支持聚合类型的函数UDAF:

count、avg、min、max、sum

还支持生成多行的函数。

更厉害的是,支持自定义扩展~~ 比如你们公司有个mapreduce的专家,可以封装很多的函数,然后别的会sql的分析人员,就可以使用这些函数做数据仓库的分析了。

存储

首先需要说明的是,Hive在存储的时候是不做任何处理的。不像是数据库,存进去的数据要先进行特定的解析,比如解析成一个一个的字段,然后挨个存储。每个数据库的存储引擎不同,解析的方式就不太一样。

在Hive中的数据都是存储在hdfs中的,如果没有特殊的声明,会以文本的形式存储,即不会再存储前做任何操作。简直就相当于是原封不动的拷贝。当你执行查询的时候,会按照预先指定的解析规则解析,然后返回。

举个例子更好理解点:

你的文件:
1,a
2,b
3,c
那么创建表的时候会这样: create table xxx(a string,b string) row format delimited fields terminated by ','; 这个fields terminated by ','就声明了字段按照逗号进行分割。
那么当hive执行查询的时候,就会遍历文件,遇到逗号就分隔成一个字段~最后把结果返回。

毕竟hdfs还是按照块来存储数据的....这也是为什么Hive不支持局部的修改和删除,只能整体的覆盖、删除。

除了前面说的文本格式(TextFile),Hive还支持SequenceFile、RCFile,各有各的优势。sequenceFile相当于把数据切分了,然后可以局部的记录或者块进行压缩。RCFile则是列式存储,这样可以提高压缩比;还可以在查询的时候跳过不必要的列。

分区

在Hive中数据库和表其实都是hdfs中的一个目录,比如你的a数据库下的表b,存储的路径是这样的:

/user/hive/warehouse/a.db/b
后面两个部分a.db/b是很关键的,即“数据库名.db/表名”

在Hive还支持分区的概念。即按照某个特定的字段,对表进行划分。通常这个字段都是虚拟的,比如时间....

create table aa(a string,b string) partitioned by(c string);

这样就创建了分区表,如果c字段有"aaa"和"bbb"两个值,最终的目录就是酱婶的!

/user/hive/warehouse/a.db/b/c=aaa
/user/hive/warehouse/a.db/b/c=bbb

注意都是目录哦!真正的文件在这些目录下面。

由于都是目录,就很好理解,为什么分区查询会快了!因为在hive中所有的查询,基本都相当于是全表的扫描,因此要是能通过分区字段进行过滤,那么可以跳过很多不必要的文件了。

在Hive中支持静态分区(即你导数据的时候指定分区字段的值)、动态分区(按照字段的值来定分区的名称)。需要注意的是,动态分区会有很多潜在的风险,比如太多了!所以一定要合理规划你的表存储的设计。

索引

在hive0.7.0+的版本中,也是支持索引的。比如:

CREATE INDEX table02_index ON TABLE table02 (column3) AS 'COMPACT' WITH DEFERRED REBUILD;

CREATE INDEX table03_index ON TABLE table03 (column4) AS 'BITMAP' WITH DEFERRED REBUILD;

你也可以自定义索引的实现类,只要替换AS ''里面的东西,变成自己的包名类名就行。

不过一样的,添加索引虽然会加快索引。可是也意味着增加了存储的负担...所以自己衡量吧!

资源共享

安利个论坛,自愿传播的东西才是好东西——about云,加里面的群,每天都有精华分享。

无论是学习什么,官方文档总是最好的材料。

另外推荐一本书,反正也没其他的书可以看——《Hive编程指南》

循序渐进,了解Hive是什么!的更多相关文章

  1. 初识Hadoop、Hive

    2016.10.13 20:28 很久没有写随笔了,自打小宝出生后就没有写过新的文章.数次来到博客园,想开始新的学习历程,总是被各种琐事中断.一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版 ...

  2. Hive安装配置指北(含Hive Metastore详解)

    个人主页: http://www.linbingdong.com 本文介绍Hive安装配置的整个过程,包括MySQL.Hive及Metastore的安装配置,并分析了Metastore三种配置方式的区 ...

  3. Hive on Spark安装配置详解(都是坑啊)

    个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ...

  4. HIVE教程

    完整PDF下载:<HIVE简明教程> 前言 Hive是对于数据仓库进行管理和分析的工具.但是不要被“数据仓库”这个词所吓倒,数据仓库是很复杂的东西,但是如果你会SQL,就会发现Hive是那 ...

  5. 基于Ubuntu Hadoop的群集搭建Hive

    Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库.前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集. 1.安装MySQL 1.1安装MySQL ...

  6. hive

    Hive Documentation https://cwiki.apache.org/confluence/display/Hive/Home 2016-12-22  14:52:41 ANTLR  ...

  7. 深入浅出数据仓库中SQL性能优化之Hive篇

    转自:http://www.csdn.net/article/2015-01-13/2823530 一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,R ...

  8. Hive读取外表数据时跳过文件行首和行尾

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 有时候用hive读取外表数据时,比如csv这种类型的,需要跳过行首或者行尾一些和数据无关的或者自 ...

  9. Hive索引功能测试

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 从Hive的官方wiki来看,Hive0.7以后增加了一个对表建立index的功能,想试下性能是 ...

随机推荐

  1. supervisor-1:基础篇

    别人博客转载,做个记录 原文链接:http://lixcto.blog.51cto.com/4834175/1539136 有阵子没写博客了,这段时间一直在研究python django框架和前端相关 ...

  2. 现场打印智能无线PDA安卓POS 条码识别、打印、数据采集销售开单收银管理软件

    现场打印安卓POS 条码识别.打印.数据采集管理软件 案例: 经营日化品牌,从事小型超市和日用品商店的批发配送业务. 公司以前的销售模式:三个业务员负责跑市场,每个人负责一个区域,平均每天每个人要去到 ...

  3. Redis——学习之路四(初识主从配置)

    首先我们配置一台master服务器,两台slave服务器.master服务器配置就是默认配置 端口为6379,添加就一个密码CeshiPassword,然后启动master服务器. 两台slave服务 ...

  4. Hdu4311 || 4312Meeting point-1/-2 n个点中任意选一个点使得其余点到该点曼哈顿距离之和最小

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  5. 复利计算器(软件工程)及Junit测试———郭志豪

    计算:1.本金为100万,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的利息收入:按复利计算公式来计算就是:1,000,000×(1+3%)^30 客户提出: 2.如果按照单利计算 ...

  6. 1.2 控制器 view 的创建和加载

    本文并非最终版本,如有更新或更正会第一时间置顶,联系方式详见文末 如果觉得本文内容过长,请前往本人 “简书”       加载优先顺序: 1.用系统的loadView方法创建控制器的视图 2.如果指定 ...

  7. Python调用HTTP接口并传递cookie

    #get接口调用 import urllib import urllib2 get_url = "http://10.10.3.63/test?id=123&name=nba&quo ...

  8. CODEVS 天梯 代码记录

    所有水题均被折叠 Lv.1 青铜 1201 #include<iostream> #include<cstring> #include<algorithm> #in ...

  9. 阅读jquery源码与js依赖加载的模块化!

    阅读源码肯定是先下载有注释的源码 我也是醉了,10309 行代码,在陆续续的一个月之内,看完了,虽有收获但收获不大, 直到又一次看jquery的github,怎么会有cmd????没听过使用jquer ...

  10. 基于synchronized 或 ReadWriteLock实现 简单缓存机制

    package cn.xxx.xxx; import java.util.HashMap; import java.util.Map; import java.util.concurrent.lock ...