P1967 货车运输

题目描述

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,从一个地方到另一个地方最多能运多重的货物。

说明

对于 100%的数据,0 < 城市数n < 10,000,0 < 道路数m < 50,000,0 < 询问数q< 30,000,0 ≤ 限重z ≤ 100,000。


鉴于这是个稀疏图,我们用kruskal。

最小生成树有一个定理,就是边集中最大的边最小

那么我们魔改一下kruskal使它变成求最大生成树,就有最小边最大的定理。

之后就可以通过一些手段来处理造出来的生成树了

树链剖分辣么长,懒得打

所以博主这儿用的倍增

f1[i][j]表示i点往上跳2^j距离到达的点

f2[i][j]表示i点往上跳2^j距离的路径上的最小值

就可以暴力求LCA辣啊哈哈哈哈

这里推荐一个更快的大佬code-> http://www.cnblogs.com/xzz_233/p/7614189.html .

代码蒯上

#include<iostream>
#include<iomanip>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
inline int gotcha()
{
register int _a=0;bool _b=1;register char _c=getchar();
while(_c<'0' || _c>'9'){if(_c=='-')_b=0;_c=getchar();}
while(_c>='0' && _c<='9')_a=_a*10+_c-48,_c=getchar();
return _b?_a:-_a;
}
const int _ = 10002;
using namespace std;
struct edge{int to,ne,len;edge(){to=ne=len=0;}}e[10*_];
struct sav
{
int fr,to,len;sav(){fr=to=len=0;}
const bool operator < (const sav &b)const{return len>b.len;}
}tp[5*_];
int he[_],ecnt=0,dep[_],f1[_][18],f2[_][18],n,m,fa[_],gfa[_];
void add(int fr,int to,int len)
{e[++ecnt].to=to,e[ecnt].len=len,e[ecnt].ne=he[fr],he[fr]=ecnt;}
int finder(int a){return gfa[a]!=a?gfa[a]=finder(gfa[a]):a;}
void link(int a,int b){gfa[finder(b)]=finder(a);}
void plant(int a)
{
for(int i=he[a],j;i;i=e[i].ne)
{
j=e[i].to;if(j==fa[a])continue;
fa[j]=a,f1[j][0]=a,f2[j][0]=e[i].len,dep[j]=dep[a]+1,plant(j);
}
}
int driver(int st,int ta)
{
register int i,mi=2e9;
if(dep[st]>dep[ta])
for(i=16;i>=0;i--)if(f1[st][i]!=0 && dep[f1[st][i]]>=dep[ta])
mi=min(mi,f2[st][i]),st=f1[st][i];
if(dep[ta]>dep[st])
for(i=16;i>=0;i--)if(f1[ta][i]!=0 && dep[f1[ta][i]]>=dep[st])
mi=min(mi,f2[ta][i]),ta=f1[ta][i];
if(st==ta)return mi;
for(i=16;i>=0;i--)if(f1[st][i]!=f1[ta][i])
mi=min(mi,min(f2[st][i],f2[ta][i])),st=f1[st][i],ta=f1[ta][i];
return min(mi,min(f2[st][0],f2[ta][0]));
}
int main()
{
register int i,j,k;
n=gotcha(),m=gotcha();
for(i=1;i<=n;i++)gfa[i]=i;
for(i=1;i<=m;i++)tp[i].fr=gotcha(),tp[i].to=gotcha(),tp[i].len=gotcha();
sort(tp+1,tp+m+1);
for(i=1;i<=m;i++)
if(finder(tp[i].fr)!=finder(tp[i].to))
{
link(tp[i].fr,tp[i].to);
add(tp[i].fr,tp[i].to,tp[i].len),add(tp[i].to,tp[i].fr,tp[i].len);
}
for(i=1;i<=n;i++)if(i==gfa[i])fa[i]=i,dep[i]=1,plant(i);
for(i=1;i<=16;i++)
for(j=1;j<=n;j++)
{
f1[j][i]=f1[f1[j][i-1]][i-1];
f2[j][i]=min(f2[j][i-1],f2[f1[j][i-1]][i-1]);
}
i=gotcha();
while(i--)
{
j=gotcha(),k=gotcha();
printf("%d\n",(finder(j)==finder(k)?driver(j,k):-1));
}
return 0;
}

kruskal - 倍增 - 并查集 - Luogu 1967 货车运输的更多相关文章

  1. [luogu 1967]货车运输

    货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情 ...

  2. luogu 1967 货车运输(最大生成树+LCA)

    题意:给出一颗n个点的图,q个询问,每次询问u到v的路径中最小的边最大是多少. 图的最大生成树有一个性质,对于该图的任意两个点,在树中他们之间路径的最小边最大. 由于这个图不一定联通,于是我们对它的联 ...

  3. 洛谷P3295 萌萌哒 [SCOI2016] 倍增+并查集

    正解:倍增+并查集 解题报告: 传送门! 首先不难想到暴力?就考虑把区间相等转化成对应点对相等,然后直接对应点连边,最后求有几个连通块就好辣 然后看下复杂度,修改是O(n2)查询是O(n),就比较容易 ...

  4. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  5. 货车运输-洛谷-1967-LCA+最大生成树(kruskal(并查集))

    传送门 一道:LCA+最大生成树 个人认为把这两个的板子写好(并熟练掌握了之后)就没什么难的 (但我还是de了好久bug)qwq 最大生成树:其实就是最小生成树的变形 我用的是kruskal (个人觉 ...

  6. Luogu P1967 货车运输(Kruskal重构树)

    P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \ ...

  7. [SCOI2016]萌萌哒(倍增+并查集)

    一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子串Sl1Sl1 ...

  8. 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)

    4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 865  Solved: 414 Description 一个长 ...

  9. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

随机推荐

  1. swift 监听键盘弹出的高度

    // 监听键盘通知 NotificationCenter.default.addObserver(self, selector: #selector(ComposeViewController.key ...

  2. 遍历List集合的方式

    遍历List集合的方式有很多,现在举出最常见的三种 List<String> list = new ArrayList<String>(); list.add("a& ...

  3. vue-cli3项目优化首页加载过慢的一些心得

    博主最近发现vue-cli3项目做完后,点击首页加载时间好久啊,一般都要3-5s.这样的加载时间博主自己都受不了,所以就有了这个随笔,将自己的一些研究心得分享给大家. 首先推荐大家下载一个webpac ...

  4. 【Unity3D】点击交互——简单工厂

    实现一个很简单的点击小游戏,学习交互相关的内容,在不实时创建销毁的情况下,使用简单工厂创建.管理.回收.复用标记. 游戏概述:点击出现标记,两秒内自动消失 游戏展示: 1.1实现点击效果. 1.1.1 ...

  5. [总结] min-25筛

    再不写总结我又会忘掉啊啊啊啊啊啊啊啊啊 这个\(min-25\)筛主要用来求一个积性函数的前缀和,就像这样\[\sum_{i=1}^n f(i)\] 不过这个积性函数要满足两个条件:质数\(p\)的函 ...

  6. 一键部署Moodle开源课程管理系统

    产品详情 产品介绍Moodle https://moodle.org/ 是一个开源及自由的电子学习软件平台,亦称为课程管理系统.学习管理系统或虚拟学习环境.Moodle 特色异于其他商业线上教学平台, ...

  7. UVA 147 Dollars 刀了(完全背包,精度问题)

    题意:一样是求钱的转换方案数,但是这次单位下降到分,但给的是元为单位的,所以是浮点的,但是固定有两位小数. 思路:数据都放大100倍来计算,去除精度问题,转成整型时要注意精度.即使给的是0.02,乘以 ...

  8. 爬去豆瓣图书top250数据存储到csv中

    from lxml import etree import requests import csv fp=open('C://Users/Administrator/Desktop/lianxi/do ...

  9. 3. Netbackup 7.6客户端的安装(windows/linux)

    1 客户端的安装 1.1 Windows客户端安装 1.1.1 客户端hosts修改 windows xp/2003/vista/2008/7/8用户HOSTS文件是在“c:\windows\syst ...

  10. linux必会命令-查询-tail

    先说一个tail使用的例子: tail -n 20 filename 说明:显示filename最后20行. Linux下tail命令的使用方法.linux tail命令用途是依照要求将指定的文件的最 ...