题意:

给一棵\(n(1 \leq n \leq 10^5)\)个节点的二叉树,除叶子节点外,每个点都有左儿子和右儿子。

每个点上都有一个权值。

游戏规则是这样的:在根节点放一个权值为\(X\)的小球,假设当前节点的权值是\(w_i\)

  • 如果\(X=w_i\),小球就停在这个节点。
  • 如果\(X<w_i\),小球等概率地往左右两个儿子走下去。
  • 如果\(X>w_i\),小球以\(\frac{1}{8}\)的概率走到左儿子,以\(\frac{7}{8}\)的概率走到右儿子。

下面有若干次询问\(v \, X\),问从根节点放一个权值为\(X\)的小球走到节点\(v\)的概率是多少。

分析:

构造一棵主席树,维护父亲权值在区间\([L,R]\)中左儿子和右儿子的个数。

首先判断一下概率为\(0\)的情况,如果找到父亲权值等于小球权值\(X\)的点,那么概率为\(0\)。

否则就统计一下父亲权值小于\(X\)的左儿子个数\(lcnt\),右儿子个数\(rcnt\),以及所有的儿子个数\(sons\)。

所求的概率为:\(p=\frac{1^{lcnt} \cdot 7^{rcnt} \cdot 4^{sons-lcnt-rcnt}}{8}\)

解得\(x=rcnt, \, y=sons+lcnt+rcnt\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = 100000 + 10;
const int maxnode = maxn << 5; struct Node
{
int lcnt, rcnt;
Node(int l = 0, int r = 0): lcnt(l), rcnt(r) {}
Node operator + (const Node& t) const {
return Node(lcnt + t.lcnt, rcnt + t.rcnt);
}
}; int sz;
Node T[maxnode];
int lch[maxnode], rch[maxnode];
int root[maxn]; int update(int pre, int L, int R, int pos, Node t) {
int rt = ++sz;
T[rt] = T[pre] + t;
lch[rt] = lch[pre];
rch[rt] = rch[pre];
if(L < R) {
int M = (L + R) / 2;
if(pos <= M) lch[rt] = update(lch[pre], L, M, pos, t);
else rch[rt] = update(rch[pre], M+1, R, pos, t);
}
return rt;
} int n, m, Q;
int a[maxn], b[maxn * 2], tot;
int v[maxn], x[maxn];
int ch[maxn][2];
int dep[maxn]; void dfs(int u) {
if(!ch[u][0]) return;
root[ch[u][0]] = update(root[u], 1, tot, a[u], Node(1, 0));
root[ch[u][1]] = update(root[u], 1, tot, a[u], Node(0, 1));
dep[ch[u][0]] = dep[ch[u][1]] = dep[u] + 1;
dfs(ch[u][0]);
dfs(ch[u][1]);
} bool queryequal(int rt, int L, int R, int pos) {
if(L == R) { return T[rt].lcnt + T[rt].rcnt != 0; }
int M = (L + R) / 2;
if(pos <= M) return queryequal(lch[rt], L, M, pos);
else return queryequal(rch[rt], M+1, R, pos);
} Node queryless(int rt, int L, int R, int pos) {
if(R <= pos) return T[rt];
int M = (L + R) / 2;
if(pos <= M) return queryless(lch[rt], L, M, pos);
else return T[lch[rt]] + queryless(rch[rt], M+1, R, pos);
} int main()
{
int _; scanf("%d", &_);
while(_--) {
int n; scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", a + i);
b[i - 1] = a[i];
}
scanf("%d", &m);
memset(ch, 0, sizeof(ch));
while(m--) {
int u; scanf("%d", &u);
scanf("%d%d", &ch[u][0], &ch[u][1]);
}
scanf("%d", &Q);
tot = n;
for(int i = 1; i <= Q; i++) {
scanf("%d%d", v + i, x + i);
b[tot++] = x[i];
} sort(b, b + tot);
tot = unique(b, b + tot) - b;
for(int i = 1; i <= n; i++)
a[i] = lower_bound(b, b + tot, a[i]) - b + 1;
for(int i = 1; i <= Q; i++)
x[i] = lower_bound(b, b + tot, x[i]) - b + 1; sz = 0;
dfs(1); for(int i = 1; i <= Q; i++) {
if(queryequal(root[v[i]], 1, tot, x[i])) {
printf("0\n"); continue;
}
Node ans;
if(x[i] > 1) ans = queryless(root[v[i]], 1, tot, x[i] - 1);
int sons = dep[v[i]];
int ans2 = sons * 3;
ans2 -= (sons - ans.lcnt - ans.rcnt) * 2;
int ans7 = ans.rcnt;
printf("%d %d\n", ans7, ans2);
}
} return 0;
}

HDU 4605 Magic Ball Game 主席树的更多相关文章

  1. HDU 4605 Magic Ball Game (在线主席树|| 离线 线段树)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一棵二叉树,每个结点孩子数目为0或者2. ...

  2. hdu 4605 Magic Ball Game (在线主席树/离线树状数组)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4605 题意: 有一颗树,根节点为1,每一个节点要么有两个子节点,要么没有,每个节点都有一个权值wi .然后,有一个球,附带值x . 球 ...

  3. HDU 4605 Magic Ball Game(可持续化线段树,树状数组,离散化)

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  4. hdu 4605 Magic Ball Game

    http://acm.hdu.edu.cn/showproblem.php?pid=4605 可以离线求解 把所以可能出现的 magic ball  放在一个数组里(去重),从小到大排列 先不考虑特殊 ...

  5. HDU 4605 Magic Ball Game (dfs+离线树状数组)

    题意:给你一颗有根树,它的孩子要么只有两个,要么没有,且每个点都有一个权值w. 接着给你一个权值为x的球,它从更节点开始向下掉,有三种情况 x=w[now]:停在此点 x<w[now]:当有孩子 ...

  6. HDU 4605 Magic Ball Game 树状数组

    题目大意很简单. 有一颗树(10^5结点),所有结点要么没有子结点,要么有两个子结点.然后每个结点都有一个重量值,根结点是1 然后有一个球,从结点1开始往子孙结点走. 每碰到一个结点,有三种情况 如果 ...

  7. HDU 4605 Magic Ball Game(离线算法)

    题目链接 思路就很难想+代码实现也很麻烦,知道算法后,已经写的很繁琐而且花了很长时间,200+,好久没写过这么长的代码了. #pragma comment(linker, "/STACK:1 ...

  8. HDU 4602 Magic Ball Game(离线处理,树状数组,dfs)

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. HDU 4417 Super Mario(主席树求区间内的区间查询+离散化)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

随机推荐

  1. java jmap

    jmap : 命令用于生成堆转储快照.它还可以查询finalize执行队列.Java堆和永久代的详细信息,如空间使用率.当前用的是哪种收集器等. 命令格式: jmap [option] vmid op ...

  2. Ionic开发-常用插件安装

      cordova plugin add cordova-plugin-nativestoragecordova plugin add cordova-plugin-devicecordova plu ...

  3. 第一天课程-html基础

    一.课程内容: 1.安装需要的软件 安装了三个软件:Adobe Dreamweaver,EmEditor,FSCapture.分别是前端开发软件.功能强大的文本编辑器,截图录屏软件 2.了解文件格式. ...

  4. Git基础使用教程(仓库初始化,源码clone,源码push)

    一.下载Git源码管理客户端 Git下载地址:https://git-scm.com/ 二.检查电脑是否已安装Git 1)已安装:输入git出现下图提示则代表已安装成功. 2)未安装情况下git会出现 ...

  5. Android自定义可拖动的悬浮按钮

    在页面上随意拖动的按钮 public class MoveScaleRotateView extends RelativeLayout { private Context mContext; //默认 ...

  6. Android 4.4及以后将内容布局延伸到状态栏

    首先说明:该文章不是大家说的沉浸式状态栏,网上沉浸式状态栏的博客很多,搜索就有了! 该篇博客的主要目的就是为了将图片显示在状态栏上,让APP看起来更有型!如下图所示:   界面 这个界面的布局就是co ...

  7. uvm_reg_file——寄存器模型(十四)

    有了uvm_reg_field, uvm_reg, uvm_block, 也许我们需要跟大的uvm_file,这就是传说中的寄存器堆. // // CLASS: uvm_reg_file // Reg ...

  8. EasyUI:EasyUI-DataGrid多行合并实现

    1.首先我们<table>增加一个属性data-options="onLoadSuccess:mergeCells",mergeCells是我们对应的JS方法名,意思就 ...

  9. [神经网络]一步一步使用Mobile-Net完成视觉识别(四)

    1.环境配置 2.数据集获取 3.训练集获取 4.训练 5.调用测试训练结果 6.代码讲解 本文是第四篇,下载预训练模型并训练自己的数据集. 前面我们配置好了labelmap,下面我们开始下载训练好的 ...

  10. 为管理复杂组件状态困扰?试试 vue 简单状态管理 Store 模式【转】

    https://juejin.im/post/5cd50849f265da03a54c3877 在 vue 中,通信有几种形式: 父子组件 emit/on vuex 中共享 state 跨组件 Eve ...