Grids

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 93    Accepted Submission(s): 25

Problem Description
  度度熊近期非常喜欢玩游戏。这一天他在纸上画了一个2行N列的长方形格子。

他想把1到2N这些数依次放进去。可是为了使格子看起来优美,他想找到使每行每列都递增的方案。只是画了非常久,他发现方案数实在是太多了。度度熊想知道,有多少种放数字的方法能满足上面的条件?

 
Input
  第一行为数据组数T(1<=T<=100000)。

  然后T行,每行为一个数N(1<=N<=1000000)表示长方形的大小。
 
Output
  对于每组数据,输出符合题意的方案数。

因为数字可能很大,你仅仅须要把最后的结果对1000000007取模就可以。

 
Sample Input
2
1
3
 
Sample Output
Case #1:
1
Case #2:
5
Hint
对于第二组例子。共5种方案,详细方案为:
 
Source

通过打表得出前7项分别为1,2,5,14,42,132,429。可知答案为卡特兰数h(n)=C(2n,n)/(n+1)=h(n-1)*(4*n-2)/(n+1)。

一開始採用组合数分解素因子+二分求幂求组合数取模,但是会TLE。组合数求模相关知识http://hi.baidu.com/aekdycoin/item/e051d6616ce60294c5d249d7。渣代码例如以下:

#include <stdio.h>
#include <string>
#include <iostream>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 2000005;
const int n=148955;
bool a[N];//a[]的长度比pr[]的长度长得多
int pr[n];
#define MOD 1000000007
int num;
void Prime2()
{
memset(a, 0, N*sizeof(a[0]));
int i, j;
num = 0;
a[0]=a[1]=1;
for(i = 2; i < N; ++i)
{
if(!(a[i])) pr[num++] = i;
for(j = 0; (j<num && i*pr[j]<N); ++j)
{
a[i*pr[j]] = 1;
if(!(i%pr[j])) break;
}
}
}
int val[n],len;
void calcJC(int n,int id,int flag){
int ans=0,y,p=pr[id];
while(n){
y=n/p;
ans+=y;
n=y;
}
val[id]=val[id]+ans*flag;
}
__int64 extgcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
if(b==0)
{
x=1,y=0;
return a;
}
__int64 r=extgcd(b,a%b,x,y);
__int64 t=x;x=y;y=t-a/b*y;
return r;
}
int MPow(int p,int e){
if(e==0)return 1;
else if(e==1)return p;
int t=p,ans=1;
while(e){
if(e&1)ans=(ans*t)%MOD;
t=(t*t)%MOD;
e>>=1;
}
return ans;
}
int main()
{
Prime2();
int txt,l=1,k,i;
__int64 ans,x,y;
scanf("%d",&txt);
while(txt--){
scanf("%d",&k);
memset(val,0,sizeof(val));
for(i=0;pr[i]<=2*k;++i)
calcJC(2*k,i,1);
for(i=0;pr[i]<=k;++i)
calcJC(k,i,-2);
ans=1;
for(i=0;pr[i]<=2*k;++i){
// if(val[i]>0)printf("%d^%d ",pr[i],val[i]);
ans=(ans*MPow(pr[i],val[i]))%MOD;
}
extgcd(k+1,MOD,x,y);
x=(x+MOD)%MOD;
ans=(ans*x)%MOD;
printf("%I64d\n",ans);
}
return 0;
}

无奈,看到n范围不是非常大,直接打表吧、、、

#include <stdio.h>
#include <string>
#include <iostream>
#include<vector>
#include<cmath>
#include<algorithm>
using namespace std;
#define MOD 1000000007
const int N = 1000001;
int a[N];
__int64 extgcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
if(b==0)
{
x=1,y=0;
return a;
}
__int64 r=extgcd(b,a%b,x,y);
__int64 t=x;x=y;y=t-a/b*y;
return r;
}
void calcCATALAN(int n){
__int64 x,y;
a[1]=1;
int i;
for(i=2;i<n;++i){
x=a[i-1];
a[i]=(x*(4*i-2))%MOD;
extgcd(i+1,MOD,x,y);
x=(x+MOD)%MOD;
a[i]=(a[i]*x)%MOD;
}
}
int main()
{
calcCATALAN(N);
int txt,l=1,k;
scanf("%d",&txt);
while(txt--){
scanf("%d",&k);
printf("Case #%d:\n",l++);
printf("%d\n",a[k]);
}
return 0;
}

hdoj 4828 卡特兰数取模的更多相关文章

  1. HDU-4828 卡特兰数+带模除法

    题意:给定2行n列的长方形,然后把1—2*n的数字填进方格内,保证每一行,每一列都是递增序列,求有几种放置方法,对1000000007取余: 思路:本来想用组合数找规律,但是找不出来,搜题解是卡特兰数 ...

  2. uva 10692 Huge Mods 超大数取模

    vjudge上题目链接:Huge Mods 附上截图: 题意不难理解,因为指数的范围太大,所以我就想是不是需要用求幂大法: AB % C = AB % phi(C) + phi(C) % C ( B ...

  3. bjfu1238 卡特兰数取余

    题目就是指定n,求卡特兰数Ca(n)%m.求卡特兰数有递推公式.通项公式和近似公式三种,因为要取余,所以近似公式直接无法使用,递推公式我简单试了一下,TLE.所以只能从通项公式入手. Ca(n) = ...

  4. HDU 4828 (卡特兰数+逆)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...

  5. HOJ 13101 The Triangle Division of the Convex Polygon(数论求卡特兰数(模不为素数))

    The Triangle Division of the Convex Polygon 题意:求 n 凸多边形可以有多少种方法分解成不相交的三角形,最后值模 m. 思路:卡特兰数的例子,只是模 m 让 ...

  6. HDU 4828 (卡特兰数+逆元)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1.然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列.假设把0看成入栈,1看 ...

  7. Fibonacci数列对任何数取模都是一个周期数列

    题目是要求出斐波那契数列n项对一个正整数取模,那么可以把斐波那契数列取模后得到的数列周期求出来. 比如下面一个题目:求出f[n]的后4位,先求出数列对10000取模的周期,然后再查找即可. #incl ...

  8. 【Gym 100947E】Qwerty78 Trip(组合数取模/费马小定理)

    从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模.可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为 C((m−1)+(n−1),n−1) 再考虑其 ...

  9. HPU 1471:又是斐波那契数列??(大数取模)

    1471: 又是斐波那契数列?? 时间限制: 1 Sec 内存限制: 128 MB 提交: 278 解决: 27 统计 题目描述 大家都知道斐波那契数列吧?斐波那契数列的定义是这样的: f0 = 0; ...

随机推荐

  1. python练手系列-分布式监控

    如果我们要写一个监控系统,要注意哪些问题和需求? [1] agent收集数据的时候需要通过系统调用少的方法收集到我们需要数据,一般来说我们优先使用python自带的系统方法,然后是读取/proc 文件 ...

  2. 零基础学习 Python 之前期准备

    写在之前 从今天开始,我将开始新的篇章 -- 零基础学习 Python,在这里我将从最基本的 Python 写起,然后再慢慢涉及到高阶以及具体应用方面.我是完全自学的 Python,所以很是明白自学对 ...

  3. Numpy ndarray 的高级索引存在 "bug" ?

    Numpy ndarray 高级索引 "bug" ? 话说一天,搞事情,代码如下 import numpy as np tmp = [1, 2, 3, 4] * 2 a, b = ...

  4. spring中MessageSource的配置使用方法2--ReloadableResourceBundleMessageSource

    如何在spring mvc框架中实现MessageSource来管理国际资源文件呢 如下: 1.在applicationContext.xml文件内配置如下 <span style=" ...

  5. Mondriaan's Dream(poj 2411)

    题意:在n*m的方格里铺1*2的骨牌,有多少种方案 /* 第一次做插头DP,感觉和状压差不多. 这道题是利用上一行的状态来更新下一行的状态. 1代表上一行这个位置填了一个竖的(即本行可以填): 0代表 ...

  6. py2exe打包整个项目

    这段时间做了用Python做了一个科学计算的项目,项目中用到了很多的第三方Python库,包括PyQt.traits.traitsui.matplotlib.pyface.table.numpy.tv ...

  7. AC日记——小行星 洛谷 P2711

    题目背景 pid=3437 题目描述 星云中有n颗行星,每颗行星的位置是(x,y,z).每次可以消除一个面(即x,y或z坐标相等)的行星,但是由于时间有限,求消除这些行星的最少次数. 输入输出格式 输 ...

  8. git-版本管理工具的介绍+发展史+分布式版本控制系统和集中式版本控制系统的区别

    一.版本管理工具的介绍: 1.备份文件: 2.记录历史: 3.多端共享: 4.团队协作: 二.版本管理工具的发展史: 1.cvs: 集中式   1985: 2.svn:  集中式    2000: 3 ...

  9. react-1 react需要的环境配置

    一.nodeJs简介和安装 1. 官网 https://nodejs.org/en/         NPM https://www.npmjs.com/ 2.检查安装成功的命令 node -v np ...

  10. Codeforces 946 A.Partition

    随便写写,然后写D的题解. A. Partition   time limit per test 1 second memory limit per test 256 megabytes input ...