Ikki's Story I - Road Reconstruction
Time Limit: 2000MS   Memory Limit: 131072K
Total Submissions: 7491   Accepted: 2172

Description

Ikki is the king of a small country – Phoenix, Phoenix is so small that there is only one city that is responsible for the production of daily goods, and uses the road network to transport the goods to the capital. Ikki finds that the biggest problem in the country is that transportation speed is too slow.

Since Ikki was an ACM/ICPC contestant before, he realized that this, indeed, is a maximum flow problem. He coded a maximum flow program and found the answer. Not satisfied with the current status of the transportation speed, he wants to increase the transportation ability of the nation. The method is relatively simple, Ikki will reconstruct some roads in this transportation network, to make those roads afford higher capacity in transportation. But unfortunately, the country of Phoenix is not so rich in GDP that there is only enough money to rebuild one road. Ikki wants to find such roads that if reconstructed, the total capacity of transportation will increase.

He thought this problem for a loooong time but cannot get it. So he gave this problem to frkstyc, who put it in this POJ Monthly contest for you to solve. Can you solve it for Ikki?

Input

The input contains exactly one test case.

The first line of the test case contains two integers N, M (N ≤ 500, M ≤ 5,000) which represents the number of cities and roads in the country, Phoenix, respectively.

M lines follow, each line contains three integers a, b, c, which means that there is a road from city a to city b with a transportation capacity of c (0 ≤ a, b < n, c ≤ 100). All the roads are directed.

Cities are numbered from 0 to n − 1, the city which can product goods is numbered 0, and the capital is numbered n − 1.

Output

You should output one line consisting of only one integer K, denoting that there are K roads, reconstructing each of which will increase the network transportation capacity.

Sample Input

2 1
0 1 1

Sample Output

1

题意:从源点0到汇点n-1,问给那些边增加容量会增大整个网络的容量??输出边的数量。
这里有个重要的概念:关键边,关键边定义为 :通过增加某个边的容量使得网络的最大流增加
个人的理解为最小割里面的边一定是关键割边,但关键割边不一定是最小割。
这题的做法是先求一次最大流,然后对残余网络进行两次DFS,从源点的DFS很简单,从正向边搜到边的容量为0即可,得到点集A,标记;主要是从汇点进行第二次DFS,这里就要用到技巧了,网络流有个神奇的反向边,我们从反向边进行DFS(也要判断一下正向边是否为0)得到点集B,标记;然后遍历所有的边,如果某条边的两个端点分别属于点集 A,B,那么这条边肯定就是关键割边,记录之。
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <string.h>
#include <math.h>
#include <iostream>
#include <math.h>
using namespace std;
const int N = ;
const int INF = ;
struct Edge
{
int v,next;
int w;
} edge[N*N];
int head[N];
int level[N];
int tot;
void init()
{
memset(head,-,sizeof(head));
tot=;
}
void addEdge(int u,int v,int w,int &k)
{
edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++;
edge[k].v = u,edge[k].w=,edge[k].next=head[v],head[v]=k++;
}
int BFS(int src,int des)
{
queue<int >q;
memset(level,,sizeof(level));
level[src]=;
q.push(src);
while(!q.empty())
{
int u = q.front();
q.pop();
if(u==des) return ;
for(int k = head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==&&w!=)
{
level[v]=level[u]+;
q.push(v);
}
}
}
return -;
}
int dfs(int u,int des,int increaseRoad)
{
if(u==des) return increaseRoad;
int ret=;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==level[u]+&&w!=)
{
int MIN = min(increaseRoad-ret,w);
w = dfs(v,des,MIN);
if(w>)
{
edge[k].w -=w;
edge[k^].w+=w;
ret+=w;
if(ret==increaseRoad) return ret;
}
else level[v] = -;
}
}
return ret;
}
int Dinic(int src,int des)
{
int ans = ;
while(BFS(src,des)!=-) ans+=dfs(src,des,INF);
return ans;
}
int vis[N];
void dfs0(int u)
{
vis[u] = ;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v,w = edge[k].w; if(!vis[v]&&w>)
{
dfs0(v);
}
}
}
void dfs1(int u)
{
vis[u] = ;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
if(!vis[v]&&edge[k^].w>&&edge[k].w>) ///汇点利用反向边进行搜索,这里还要判断一下正向边是否大于0
{
dfs1(v);
}
}
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
init();
for(int i=; i<m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==v) continue;
addEdge(u,v,w,tot);
}
memset(vis,,sizeof(vis));
Dinic(,n-);
dfs0();
dfs1(n-);
int ans = ;
for(int u=; u<n; u++)
{
for(int k=head[u]; k!=-; k=edge[k].next)
{
if(k%==) continue; ///只考虑正向边
if(vis[u]==&&vis[edge[k].v]==) ans++;
}
}
printf("%d\n",ans);
}

poj 3204(最小割--关键割边)的更多相关文章

  1. HDU 3251 Being a Hero(最小割+输出割边)

    Problem DescriptionYou are the hero who saved your country. As promised, the king will give you some ...

  2. poj 2125(最小割)

    题目链接:http://poj.org/problem?id=2125 思路:将最小点权覆盖转化为最小割模型,于是拆点建图,将点i拆成i,i+n,其中vs与i相连,边容量为w[i]-,i+n与vt相连 ...

  3. POJ 3469 最小割 Dual Core CPU

    题意: 一个双核CPU上运行N个模块,每个模块在两个核上运行的费用分别为Ai和Bi. 同时,有M对模块需要进行数据交换,如果这两个模块不在同一个核上运行需要额外花费. 求运行N个模块的最小费用. 分析 ...

  4. poj1815Friendship(最小割求割边)

    链接 题意为去掉多少个顶点使图不连通,求顶点连通度问题.拆点,构造图,对于<u,v>可以变成<u2,v1> <v2,u1>容量为无穷,<u1,u2>容量 ...

  5. 网络流 poj 3308 最小割

    t个样例 n*m的矩阵 L个伞兵 给出每行每列装激光的花费 伞兵的位置 要求杀死所有伞兵 总费用为这些费用的乘积  求花费最小 建图  源点 ->   行   -> 列  -> 汇点 ...

  6. [BZOJ 1797][AHOI2009]最小割(最小割关键边的判断)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1797 分析: 在残余网络中看: 对于第1问: 1.首先这个边必须是满流 2.其次这个边 ...

  7. poj 3084 最小割

    题目链接:http://poj.org/problem?id=3084 本题主要在构图上,我采用的是把要保护的房间与源点相连,有intruder的与汇点相连,相对麻烦. #include <cs ...

  8. HDU3987(最小割最少割边)

    Harry Potter and the Forbidden Forest Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/ ...

  9. poj 3469 最小割模板sap+gap+弧优化

    /*以核心1为源点,以核心2为汇点建图,跑一遍最大流*/ #include<stdio.h> #include<string.h> #include<queue> ...

随机推荐

  1. [LUOGU] 4149 [IOI2011]Race

    点分治裸题 #include<iostream> #include<cstring> #include<cstdio> using namespace std; i ...

  2. C#基础-数组

    数组定义 定义数组并赋值 int[] scores = { 45, 56, 78, 98, 100 }; //在定义数组时赋值 for(int i = 0; i < scores.Length; ...

  3. Python入门:Python基础笔记

    (C语言:)C语言是相对C++.C#.Java等语言更接近底层,并且一些硬件编程都可以使(只能使用)C语言.另外C语言学起来相对困难,因为涉及到指针,指针也是语言接近底层语言的一个特征.目前编写较大的 ...

  4. Linux网络配置指令

    版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址: https://www.cnblogs.com/poterliu/p/6686799.html 重启网卡service network ...

  5. nRF52-PCA10040——Overview

    Overview Zephyr applications use the nrf52_pca10040 board configuration to run on the nRF52 Developm ...

  6. POJ:1328-Radar Installation

    Radar Installation Time Limit: 1000MS Memory Limit: 10000K Description Assume the coasting is an inf ...

  7. HBase0.94.2-cdh4.2.0需求评估测试报告1.0之三

    1.1.1 测试记录 第一组:一个列,一个分区,顺序ID 测试列和分区 测试程序或命令 导入文件大小(Mb) 导入文件个数(个) 是否触发flush事件(布尔) 是否触发compact事件(布尔) 触 ...

  8. 常用C/C++预处理指令详解

    预处理是在编译之前的处理,而编译工作的任务之一就是语法检查,预处理不做语法检查.预处理命令以符号“#”开头. 常用的预处理指令包括: 宏定义:#define 文件包含:#include 条件编译:#i ...

  9. Apache简易快速安装

    转发出处:https://blog.csdn.net/qq_34804120/article/details/78862290 准备安装包 到https://www.apachelounge.com/ ...

  10. angularjs报错问题记录

    1.[$injector:unpr]:没有找到注入的东西    2.$compile:multidir:多指令编译错误.    3.[ng:areq]:重复定义了ng-controller.    4 ...