Ikki's Story I - Road Reconstruction
Time Limit: 2000MS   Memory Limit: 131072K
Total Submissions: 7491   Accepted: 2172

Description

Ikki is the king of a small country – Phoenix, Phoenix is so small that there is only one city that is responsible for the production of daily goods, and uses the road network to transport the goods to the capital. Ikki finds that the biggest problem in the country is that transportation speed is too slow.

Since Ikki was an ACM/ICPC contestant before, he realized that this, indeed, is a maximum flow problem. He coded a maximum flow program and found the answer. Not satisfied with the current status of the transportation speed, he wants to increase the transportation ability of the nation. The method is relatively simple, Ikki will reconstruct some roads in this transportation network, to make those roads afford higher capacity in transportation. But unfortunately, the country of Phoenix is not so rich in GDP that there is only enough money to rebuild one road. Ikki wants to find such roads that if reconstructed, the total capacity of transportation will increase.

He thought this problem for a loooong time but cannot get it. So he gave this problem to frkstyc, who put it in this POJ Monthly contest for you to solve. Can you solve it for Ikki?

Input

The input contains exactly one test case.

The first line of the test case contains two integers N, M (N ≤ 500, M ≤ 5,000) which represents the number of cities and roads in the country, Phoenix, respectively.

M lines follow, each line contains three integers a, b, c, which means that there is a road from city a to city b with a transportation capacity of c (0 ≤ a, b < n, c ≤ 100). All the roads are directed.

Cities are numbered from 0 to n − 1, the city which can product goods is numbered 0, and the capital is numbered n − 1.

Output

You should output one line consisting of only one integer K, denoting that there are K roads, reconstructing each of which will increase the network transportation capacity.

Sample Input

2 1
0 1 1

Sample Output

1

题意:从源点0到汇点n-1,问给那些边增加容量会增大整个网络的容量??输出边的数量。
这里有个重要的概念:关键边,关键边定义为 :通过增加某个边的容量使得网络的最大流增加
个人的理解为最小割里面的边一定是关键割边,但关键割边不一定是最小割。
这题的做法是先求一次最大流,然后对残余网络进行两次DFS,从源点的DFS很简单,从正向边搜到边的容量为0即可,得到点集A,标记;主要是从汇点进行第二次DFS,这里就要用到技巧了,网络流有个神奇的反向边,我们从反向边进行DFS(也要判断一下正向边是否为0)得到点集B,标记;然后遍历所有的边,如果某条边的两个端点分别属于点集 A,B,那么这条边肯定就是关键割边,记录之。
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <string.h>
#include <math.h>
#include <iostream>
#include <math.h>
using namespace std;
const int N = ;
const int INF = ;
struct Edge
{
int v,next;
int w;
} edge[N*N];
int head[N];
int level[N];
int tot;
void init()
{
memset(head,-,sizeof(head));
tot=;
}
void addEdge(int u,int v,int w,int &k)
{
edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++;
edge[k].v = u,edge[k].w=,edge[k].next=head[v],head[v]=k++;
}
int BFS(int src,int des)
{
queue<int >q;
memset(level,,sizeof(level));
level[src]=;
q.push(src);
while(!q.empty())
{
int u = q.front();
q.pop();
if(u==des) return ;
for(int k = head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==&&w!=)
{
level[v]=level[u]+;
q.push(v);
}
}
}
return -;
}
int dfs(int u,int des,int increaseRoad)
{
if(u==des) return increaseRoad;
int ret=;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==level[u]+&&w!=)
{
int MIN = min(increaseRoad-ret,w);
w = dfs(v,des,MIN);
if(w>)
{
edge[k].w -=w;
edge[k^].w+=w;
ret+=w;
if(ret==increaseRoad) return ret;
}
else level[v] = -;
}
}
return ret;
}
int Dinic(int src,int des)
{
int ans = ;
while(BFS(src,des)!=-) ans+=dfs(src,des,INF);
return ans;
}
int vis[N];
void dfs0(int u)
{
vis[u] = ;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v,w = edge[k].w; if(!vis[v]&&w>)
{
dfs0(v);
}
}
}
void dfs1(int u)
{
vis[u] = ;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
if(!vis[v]&&edge[k^].w>&&edge[k].w>) ///汇点利用反向边进行搜索,这里还要判断一下正向边是否大于0
{
dfs1(v);
}
}
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
init();
for(int i=; i<m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==v) continue;
addEdge(u,v,w,tot);
}
memset(vis,,sizeof(vis));
Dinic(,n-);
dfs0();
dfs1(n-);
int ans = ;
for(int u=; u<n; u++)
{
for(int k=head[u]; k!=-; k=edge[k].next)
{
if(k%==) continue; ///只考虑正向边
if(vis[u]==&&vis[edge[k].v]==) ans++;
}
}
printf("%d\n",ans);
}

poj 3204(最小割--关键割边)的更多相关文章

  1. HDU 3251 Being a Hero(最小割+输出割边)

    Problem DescriptionYou are the hero who saved your country. As promised, the king will give you some ...

  2. poj 2125(最小割)

    题目链接:http://poj.org/problem?id=2125 思路:将最小点权覆盖转化为最小割模型,于是拆点建图,将点i拆成i,i+n,其中vs与i相连,边容量为w[i]-,i+n与vt相连 ...

  3. POJ 3469 最小割 Dual Core CPU

    题意: 一个双核CPU上运行N个模块,每个模块在两个核上运行的费用分别为Ai和Bi. 同时,有M对模块需要进行数据交换,如果这两个模块不在同一个核上运行需要额外花费. 求运行N个模块的最小费用. 分析 ...

  4. poj1815Friendship(最小割求割边)

    链接 题意为去掉多少个顶点使图不连通,求顶点连通度问题.拆点,构造图,对于<u,v>可以变成<u2,v1> <v2,u1>容量为无穷,<u1,u2>容量 ...

  5. 网络流 poj 3308 最小割

    t个样例 n*m的矩阵 L个伞兵 给出每行每列装激光的花费 伞兵的位置 要求杀死所有伞兵 总费用为这些费用的乘积  求花费最小 建图  源点 ->   行   -> 列  -> 汇点 ...

  6. [BZOJ 1797][AHOI2009]最小割(最小割关键边的判断)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1797 分析: 在残余网络中看: 对于第1问: 1.首先这个边必须是满流 2.其次这个边 ...

  7. poj 3084 最小割

    题目链接:http://poj.org/problem?id=3084 本题主要在构图上,我采用的是把要保护的房间与源点相连,有intruder的与汇点相连,相对麻烦. #include <cs ...

  8. HDU3987(最小割最少割边)

    Harry Potter and the Forbidden Forest Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/ ...

  9. poj 3469 最小割模板sap+gap+弧优化

    /*以核心1为源点,以核心2为汇点建图,跑一遍最大流*/ #include<stdio.h> #include<string.h> #include<queue> ...

随机推荐

  1. MySQL左右连接查询中的NULL的数据筛选问题

    这里使用左连接为例子,对于左连接是将左边表的数据显示,右边表中如果没有对应的数据则使用null填充. game表: game_type表: SELECT g.name,g.type_id,t.type ...

  2. LVS-nat模式-原理介绍

    集群,为解决某个特定问题将多台计算机组合起来形成的单个系统 lvs-nat: 本质是多目标IP的DNAT,通过将请求报文中的目标地址和目标端口修改为某挑出的RS的RIP和PORT实现转发 lvs集群类 ...

  3. 补之前 如何改变jupyter打开文件的路径

    目录 如何改变jupyter打开文件的路径 第一种方法: 第二种方法 第三种方法 如何改变jupyter打开文件的路径 当我们直接打开jupyter时,直接加载的是我们的C盘文件 现在我们想打开其他盘 ...

  4. OpenCV中图像的BGR格式及Img对象的属性说明

    1. 图像的BGR格式说明 OpenCV中图像读入的数据格式是numpy的ndarray数据格式.是BGR格式,取值范围是[0,255]. 如下图所示,分为三个维度: 第一维度:Height 高度,对 ...

  5. python的标准模块

    本文用于记录python中的标准模块,随时更新. decimal模块(解决小数循环问题): >>> import decimal >>> a = decimal.D ...

  6. LeetCode(303)Range Sum Query - Immutable

    题目 Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclus ...

  7. Gym - 100781G Goblin Garden Guards (扫描线)

    题意: n 只哥布林,每只哥布林都有一个位置坐标. m 个炮台,每个炮台都有一个位置坐标和一个攻击半径. 如果一个哥布林在任何一个炮台的攻击范围内,都会被杀死. 求最后没有被杀死的哥布林的数量. 这题 ...

  8. (转)JVM各种内存溢出是否产生dump

    对于java的内存溢出,如果配置-XX:+HeapDumpOnOutOfMemoryError,很明确的知道堆内存溢出时会生成dump文件.但永久代内存溢出不明确是否会生成,今天来做一个实验: 永久代 ...

  9. Activity树图

  10. css 阴影使用

    文本阴影 p{ text-shadow: 5px 5px 5px #FF0000; } text-shadow: h-shadow v-shadow blur color; text-shadow: ...