BZOJ 4827 [Hnoi2017]礼物 ——FFT
题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了。
然后考虑计算的式子,可以分成两个部分分开计算。
前半部分FFT,后半部分扫一遍。
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define double long double
#define llinf 10000000000000000LL
#define maxn 500005
#define eps 1e-6 struct Complex{
double x,y;
Complex (){}
Complex (double _x,double _y){x=_x;y=_y;}
Complex operator + (Complex a) {return Complex(x+a.x,y+a.y);}
Complex operator - (Complex a) {return Complex(x-a.x,y-a.y);}
Complex operator * (Complex a) {return Complex(x*a.x-y*a.y,x*a.y+y*a.x);}
}A[maxn],B[maxn]; const double pi=acos(-1.0);
int rev[maxn];
ll ans=llinf,res[maxn],sumA2=0,sumB2=0,sumA=0,sumB=0; void FFT(Complex *x,int n,int flag)
{
F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]);
for (int m=2;m<=n;m<<=1)
{
Complex wn=Complex(cos(2*pi/m),flag*sin(2*pi/m));
for (int i=0;i<n;i+=m)
{
Complex w=Complex(1.0,0);
for (int j=0;j<(m>>1);++j)
{
Complex u=x[i+j],v=x[i+j+(m>>1)]*w;
x[i+j]=u+v;x[i+j+(m>>1)]=u-v;
w=w*wn;
}
}
}
} int n,m,L=0; int main()
{
scanf("%d%d",&n,&m);
F(i,0,n-1)
{
int x;scanf("%d",&x);
A[i].x=x;
sumA+=x;
sumA2+=(ll)x*x;
}
D(i,n-1,0)
{
int x;scanf("%d",&x);
B[i].x=x;
sumB+=x;
sumB2+=(ll)x*x;
B[i+n].x=B[i].x;
}
for(m=1;m<=4*n;m<<=1);while(!(m>>L&1))L++;
F(i,0,m-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
FFT(A,m,1);FFT(B,m,1);F(i,0,m-1)A[i]=A[i]*B[i];FFT(A,m,-1);
F(i,0,m-1) res[i]=(A[i].x+0.4)/m;
F(i,-100,100)
{
ll tmp=2*i*(sumA-sumB)+n*i*i;
F(j,n-1,2*n-1) ans=min(ans,sumA2+sumB2+tmp);
}
ll tmp=-llinf;
F(i,n-1,2*n-1) tmp=max(tmp,res[i]);
ans-=2*tmp;
printf("%lld\n",ans);
}
BZOJ 4827 [Hnoi2017]礼物 ——FFT的更多相关文章
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- bzoj 4827 [Hnoi2017]礼物——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 式子就是 \sum_{i=0}^{n-1}(a[ i ] - b[ i+k ] + c ...
- bzoj 4827 [Hnoi2017] 礼物 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 首先,旋转对应,可以把 b 序列扩展成2倍,则 a 序列对应到的还是一段区间: 再把 ...
- bzoj 4827: [HNOI2017]礼物 (FFT)
一道FFT 然而据说暴力可以水70分 然而我省选的时候看到了直接吓傻了 连暴力都没打 太弱了啊QAQ emmmm 详细的拆开就看其他题解吧233 最后那一步卷积其实我一直没明白 后来画画图终于懂了 ...
- bzoj 4827: [Hnoi2017]礼物【FFT】
记得FFT要开大数组!!开到快MLE的那种!!我这个就是例子TAT,5e5都RE了 在这题上花的时间太多了,还是FFT不太熟练. 首先看70分的n方做法:从0下标开始存,先n--,把a数组倍增,然后枚 ...
- 【刷题】BZOJ 4827 [Hnoi2017]礼物
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在 ...
- BZOJ 4827: [Hnoi2017]礼物 FFT_多项式_卷积
题解稍后在笔记本中更新 Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r&q ...
- BZOJ:4827: [Hnoi2017]礼物
[问题描述] 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的 ...
- 4827: [Hnoi2017]礼物
4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...
随机推荐
- angular路由学习笔记
文章目录 标签routerLink路由传递参数 url中get传值 定义路由 获取参数 配置动态路由 定义路由 获取参数 API js路由跳转 配置动态路由 定义路由 获取参数 get传值 定义路由 ...
- OO第13-14次作业总结
目录 面向对象第13-14次作业总结博客 1.设计分析 2.架构总结.测试 3.课程收获和建议 面向对象第13-14次作业总结博客 1.设计分析 这个单元是我做的最差的一个单元.总工程量超过2000行 ...
- 题解 P1137 【旅行计划】
传送门 很显然,每个点的答案是它所有前驱节点的答案加1,即f[i]=max(f[i],f[j]+1); 考虑空间复杂度用邻接表存图,在拓扑排序同时DP就好了 #include<iostream& ...
- hadoop + ssh 配置
1.输入 2.解决上述问题 3. 4.去掉登陆密码 5.不用密码登陆
- InstallShield Limited Edition for Visual Studio 2013 图文教程打包安装包
http://www.wuleba.com/23892.html 从Visual Studio 2012开始,微软就把自家原来的安装与部署工具彻底废掉了,转而让大家去安装使用第三方的打包工具“Inst ...
- C/C++ 程序基础 (一)基本语法
域操作符: C++ 支持通过域操作符访问全局变量,C不支持(识别为重定义) ++i和i++的效率分析: 内置类型,无区别 自定义数据类型,++i可以返回引用,i++只能返回对象值(拷贝开销) 浮点数与 ...
- java 获取request中的请求参数
1.get 和 post请求方式 (1)request.getParameterNames(); 获取所有参数key后.遍历request.getParameter(key)获取value (2)re ...
- Freemaker基于word模板动态导出压缩文件汇总整理
Freemaker基于word模板动态导出压缩文件汇总整理 Freemaker基于word模板动态导出单个文件思路和代码详情见连接: https://www.cnblogs.com/lsy-blogs ...
- ob缓存的基本使用
在页面 加载的时候 如果 图片 很多 很大 会造成页面的阻塞降低用户体验 我们在点击页面的时候可以使用OB缓存 整个页面, 当用户点击的时候直接请求的是我们预先准备好的html页面 .也降低了我们数据 ...
- A Bug's Life(削弱版食物链)
Description Background Professor Hopper is researching the sexual behavior of a rare species of bug ...