POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 25310 | Accepted: 7022 |
Description
After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.
His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.
As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.
Input
Output
Sample Input
4
0 0 0
0 1 1
1 1 2
1 0 3
0
Sample Output
1.000
Source
题目链接:POJ 2728
原理与NYOJ那道题相似,只是这次的X集合取值有了更多的限制,即取X的边必须要是一颗生成树。
题目要求的是令$ {\Sigma cost} \over {\Sigma len} $最小,这是显然的,日常生活中肯定是让平均花费越小才越省钱,类比NYOJ的入门题,如何确定${X_i}$的取值呢?不是简单地贪心找最大,而是在最小(最大)生成树中确定它是要找一个最大的比例,而且这题是要找到一个最小的比例,那么我们用最小生成树来做即可。二分的速度没有那种迭代法快,有时候还容易超时……,哦对了这题我用邻接表手写的200W堆和自带的pq都是超时的,不得已去搬了一个邻接矩阵的朴素Prim模版没想到过了,可能是我堆写的丑……
二分代码(2360MS):
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int M = N * N * 2;
const double eps = 1e-6;
struct info
{
double x, y, z;
} P[N]; bitset<N>vis;
double cost[N][N], len[N][N], lowcost[N], Map[N][N]; inline double getlen(info a, info b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
inline double getcost(info a, info b)
{
return fabs(a.z - b.z);
}
double prim(int n, double k)
{
int i, j;
vis.reset();
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
Map[i][j] = cost[i][j] - k * len[i][j]; for (i = 1; i <= n; ++i)
lowcost[i] = Map[1][i]; double ret = 0;
vis[1] = 1;
lowcost[1] = 1e16; for (i = 1; i < n; ++i)
{
double Min = 1e16;
int pos;
for (j = 1; j <= n; ++j)
{
if (!vis[j] && lowcost[j] < Min)
{
Min = lowcost[j];
pos = j;
}
}
ret += lowcost[pos];
vis[pos] = 1;
for (j = 1; j <= n; ++j)
{
if (!vis[j] && lowcost[j] > Map[pos][j])
lowcost[j] = Map[pos][j];
}
}
return ret;
}
int main(void)
{
int n, i, j;
while (~scanf("%d", &n) && n)
{
for (i = 1; i <= n; ++i)
scanf("%lf%lf%lf", &P[i].x, &P[i].y, &P[i].z);
double Maxk = -1e16;
for (i = 1; i <= n; ++i)
{
for (j = i + 1; j <= n; ++j)
{
double c = getcost(P[i], P[j]);
double l = getlen(P[i], P[j]);
cost[i][j] = cost[j][i] = c;
len[i][j] = len[j][i] = l;
Maxk = max(Maxk, c / l);
}
}
double L = 0, R = Maxk;
double ans = 0;
while (fabs(R - L) >= eps)
{
double mid = (L + R) / 2.0;
if (prim(n, mid) > 0)
{
ans = mid;
L = mid;
}
else
R = mid;
}
printf("%.3f\n", ans);
}
return 0;
}
Dinkelbach迭代法代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const double eps = 1e-6;
struct info
{
double x, y, z;
} P[N]; bitset<N>vis;
double cost[N][N], len[N][N], lowcost[N], Map[N][N];
int pre[N]; inline double getlen(info a, info b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
inline double getcost(info a, info b)
{
return fabs(a.z - b.z);
}
double prim(int n, double k)
{
/**< 用k值重新赋边权值 */
int i, j;
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
Map[i][j] = cost[i][j] - k * len[i][j]; /**< 必要的初始化 */
vis.reset();
for (i = 1; i <= n; ++i)
{
lowcost[i] = Map[1][i];
pre[i] = 1;
}
vis[1] = 1;
double sumcost = 0, sumlen = 0; /**< Prim过程 */
for (i = 1; i < n; ++i)
{
double Min = 1e19;
int pos = 0;
for (j = 1; j <= n; ++j)
{
if (!vis[j] && lowcost[j] < Min)
{
pos = j;
Min = lowcost[j];
}
}
vis[pos] = 1;
sumcost += cost[pre[pos]][pos];
sumlen += len[pre[pos]][pos];
for (j = 1; j <= n; ++j)
{
if (!vis[j] && lowcost[j] > Map[pos][j])
{
lowcost[j] = Map[pos][j];
pre[j] = pos;
}
}
}
return sumcost / sumlen;
}
int main(void)
{
int n, i, j;
while (~scanf("%d", &n) && n)
{
for (i = 1; i <= n; ++i)
scanf("%lf%lf%lf", &P[i].x, &P[i].y, &P[i].z);
for (i = 1; i <= n; ++i)
{
for (j = i + 1; j <= n; ++j)
{
double c = getcost(P[i], P[j]);
double l = getlen(P[i], P[j]);
cost[i][j] = cost[j][i] = c;
len[i][j] = len[j][i] = l;
}
}
double ans = 0, temp = 0;
while (1)
{
temp = prim(n, ans);
if (fabs(ans - temp) < eps)
break;
ans = temp;
}
printf("%.3f\n", ans);
}
return 0;
}
POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)的更多相关文章
- POJ 2728 Desert King (最优比例生成树)
POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...
- POJ 2728 Desert King 最优比率生成树
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20978 Accepted: 5898 [Des ...
- POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)
题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...
- POJ 2728 Desert King(最优比率生成树, 01分数规划)
题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...
- POJ 2728 Desert King (最优比率树)
题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...
- poj 2728 Desert King (最小比例生成树)
http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissio ...
- POJ 2728 Desert King 01分数规划,最优比率生成树
一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...
- Desert King(最优比率生成树)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 22717 Accepted: 6374 Desc ...
- POJ2728 Desert King —— 最优比率生成树 二分法
题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS Memory Limit: 65536K Total Subm ...
随机推荐
- 题解 P1137 【旅行计划】
传送门 很显然,每个点的答案是它所有前驱节点的答案加1,即f[i]=max(f[i],f[j]+1); 考虑空间复杂度用邻接表存图,在拓扑排序同时DP就好了 #include<iostream& ...
- CUDA核函数参数示意:Kernel<<<Dg,Db, Ns, S>>>(param list)
核函数是GPU每个thread上运行的程序.必须通过__gloabl__函数类型限定符定义.形式如下: __global__ void kernel(param list){ } 核函数只能在主机端 ...
- HTML 5新元素和CSS
Html5 新元素 多媒体元素 video/audio: 格式例子: 属性: canvas元素 Canvas标签定义图形,用于图形的绘制,使用 js来绘图 拖放drag和drop 拖放是一种常见 ...
- Bootstrap历练实例:响应式布局
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- XAMPP安装过程中,出现的问题
这次运行一个简单的前端(html+css+js+ajax)+php后端项目,运行XAMPP的时候,出现两个问题: phpmyadmin运行不起来,一直报1544错误 请求本地图片及php文件报403错 ...
- 前端小记2——移动web解决方案
面向用户级移动web解决方案: 1.代码结构规范 2.字体设置 body{ font-family: -apple-system, BlinkMacSystemFont, "PingFang ...
- 国产中标麒麟Linux部署dotnet core 环境并运行项目 (一) 安装dotnet core
背景 根据我之前写的文章 将 Net 项目升级 Core项目经验:(一)迁移Net项目为Net Core\Standard项目,我们将公司内部最核心的ORM框架迁移到net core 上面,并在win ...
- 更新MySQL数据库( java.sql.SQLException: No value specified for parameter 1) 异常 解决方法
package com.swift; import java.io.File; import java.sql.Connection; import java.sql.PreparedStatemen ...
- 十一、Shell 文件包含
Shell 文件包含 和其他语言一样,Shell 也可以包含外部脚本.这样可以很方便的封装一些公用的代码作为一个独立的文件. Shell 文件包含的语法格式如下: . filename # 注意点号( ...
- Python_深浅拷贝
深浅拷贝 ‘copy’和'='的区别:copy会开辟一个新的空间,而‘=’不会. 浅copy只会copy第一层,再里边的就进行共享了. 需要记住的是copy之后记住的是内存寻址地址,而浅copy时如果 ...