分析

设\(dp[i][j][s]\)表示从\(i\)到\(j\)的一条路径状态为\(s\)是否存在

但是这样肯定会T掉,考虑拼凑路径,分成两部分,

设\(dp[0/1][s]\)分别表示以某个起点/终点开始的一条路径状态为\(s\)是否存在,

现在表示一个点集,用出边的点集转移,可以用bitset维护,

然后如果\(dp[0][s]&dp[1][s']\)非空说明有中间点可以拼凑这两条路径

具体细节详见代码


代码

#include <cstdio>
#include <cctype>
#include <bitset>
#define rr register
using namespace std;
const int N=2048; int n,m,ans,t;
bitset<91>a[2][91],f[N],dp[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
signed main(){
n=iut(); t=iut(); m=iut();
while (t--){
rr int x=iut(),y=iut(),z=iut();
a[z][x][y]=a[z][y][x]=1;
}
rr int mid1=(m+1)>>1,mid2=m-mid1;
for (rr int st=n;st;--st){
for (rr int j=0;j<N;++j) f[j].reset();
f[1][st]=1;
for (rr int j=1;j<(1<<mid1);++j)
for (rr int i=1;i<=n;++i) if (f[j][i])
f[j<<1]|=a[0][i],f[j<<1|1]|=a[1][i];
for (rr int j=0;j<(1<<mid1);++j)
dp[j][st]=f[j|(1<<mid1)].any();
}
for (rr int i=0;i<(1<<mid1);++i)
for (rr int j=0;j<(1<<mid2);++j)
ans+=(dp[i]&f[j|(1<<mid2)]).any();
return !printf("%d",ans);
}

#折半搜索,状压dp#nssl 1471 Y的更多相关文章

  1. [NOIP10.4模拟赛]2.y题解--折半搜索+状压计数

    题目链接: 咕 闲扯: 这题暴力分似乎挺多,但是一些奇奇怪怪的细节没注意RE了,还是太菜了 分析: 首先我们考虑最naiive的状压DP ,\(f[u][v][state]\)表示u开头,v结尾是否存 ...

  2. NOIP2017宝藏 [搜索/状压dp]

    NOIP2017 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘 ...

  3. URAL 1152. False Mirrors (记忆化搜索 状压DP)

    题目链接 题意 : 每一颗子弹破坏了三个邻近的阳台.(第N个阳台是与第1个相邻)射击后后的生存的怪物都对主角造成伤害- 如此,直到所有的怪物被消灭,求怎样射击才能受到最少伤害. 思路 : 状压,数据不 ...

  4. NOIP2016愤怒的小鸟 [状压dp]

    愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...

  5. bzoj 2669 题解(状压dp+搜索+容斥原理)

    这题太难了...看了30篇题解才整明白到底咋回事... 核心思想:状压dp+搜索+容斥 首先我们分析一下,对于一个4*7的棋盘,低点的个数至多只有8个(可以数一数) 这样的话,我们可以进行一个状压,把 ...

  6. [JZOJ5398]:Adore(状压DP+记忆化搜索)

    题目描述 小$w$偶然间见到了一个$DAG$. 这个$DAG$有$m$层,第一层只有一个源点,最后一层只有一个汇点,剩下的每一层都有$k$个节点. 现在小$w$每次可以取反第$i(1<i< ...

  7. 「状压DP」「暴力搜索」排列perm

    「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...

  8. 相邻行列相互影响的状态类问题(类似状压dp的搜索)(POJ3279)

    POJ3279http://poj.org/problem?id=3279 题意:黑白的板,每次选择一个十字形翻转(十字板内黑白互换,若是边界则不管),求最小将原图变为全白的策略. 这是一道对于每个格 ...

  9. 简单状压dp的思考 - 最大独立集问题和最大团问题 - 贰

    接着上文 题目链接:最大独立集问题 上次说到,一种用状压DP解决任意无向图最大团问题(MCP)的方程是: 注:此处popcountmax代表按照二进制位下1的个数作为关键字比较,即选择二进制位下1的个 ...

  10. 【62测试】【状压dp】【dfs序】【线段树】

    第一题: 给出一个长度不超过100只包含'B'和'R'的字符串,将其无限重复下去. 比如,BBRB则会形成 BBRBBBRBBBRB 现在给出一个区间[l,r]询问该区间内有多少个字符'B'(区间下标 ...

随机推荐

  1. Linux开端---Centos

    Linux-Centos 虚拟化所需工具:https://pan.baidu.com/s/1643-kYcx9oPGnGEZM1pLOw?pwd=g0v5 提取码:g0v5 问题解决 正常注册网络适配 ...

  2. 【Azure 环境】当Azure Key Vault中存储的证书即将过期时,如何设置Alert邮件警报?

    问题描述 当Azure Key Vault 中存储的证书即将过期时, 如何设置Alert邮件警报? 问题解答 首先,在创建完一个证书后,需要为证书添加一个"证书联系人" 然后,点击 ...

  3. 使用python连接hive数仓

    1 版本参数 查看hadoop和hive的版本号 ls -l /opt # 总用量 3 # drwxr-xr-x 11 root root 227 1月 26 19:23 hadoop-3.3.6 # ...

  4. redis开启多端口

    Centos安装多端口的redis服务 背景 redis默认端口6379,由于开发需要,key有重复.于是另起端口6380. 配置服务过程 1.新建/etc/redis6380.conf,内容如下: ...

  5. rust简要笔记

    第一个程序, 我们不用安装编辑器,直接在现成的网页编辑器上运行  https://play.rust-lang.org/

  6. IDEA关联Tomcat(详细教程+安装包)

    IDEA关联Tomcat 下载Tomcat安装包并解压到全英文目录 第一步:打开IDEA--Settings 第二步:搜索application--进入Application Services--点击 ...

  7. git cherry-pick 摘樱桃 vscode

    git cherry-pick -n b2e9bf7530ce42910a5be99c358fa8c7ab6af507 -n 就是临时到暂存里面 SHA 可以为多个 逗号拼接

  8. 一个简单的HTTP服务器的实现

    我们继续我们的HTTP服务器的实现(使用别的代码来实现), 这个HTTP服务器的实现,我们主要就是关注TCP服务器中的recv还有send的处理. 首先,看一下HTTP,我们在用浏览器访问我们的TCP ...

  9. day03-自己实现Mybatis底层机制-02

    自己实现Mybatis底层机制-02 7.任务阶段4&5 阶段4任务:开发Mapper接口和Mapper.xml 阶段5任务:开发和Mapper接口相映射的MapperBean (1)Mapp ...

  10. Miracast技术详解(四):Sink源码解析

    目录 简介 Sink端源码 RTSP通讯 RTP通讯 播放阶段 MPEG2-TS解析 总结 简介 在<Android Studio导入Android 4.2.2的WiFi-Display系统源码 ...