【matplotlib 实战】--气泡图
气泡图是一种多变量的统计图表,可以看作是散点图的变形。
与散点图不同的是,每一个气泡都表示三个维度的数据,除了像散点图一样有X,Y轴,气泡的大小可以表示另一个维度的数据。
例如,x轴表示产品销量,y轴表示产品利润,气泡大小代表产品市场份额百分比。
它可以帮助我们发现变量之间的模式、趋势和异常值。
通过气泡的大小和颜色,我们可以同时比较多个变量的值,并且可以快速识别出具有较大或较小数值的数据点。
1. 主要元素
气泡图通常用于展示和比较数据之间的关系和分布,可以展示三维(X,Y轴,气泡大小),甚至四维数据(X,Y轴,气泡大小,气泡颜色)之间的关系。
它的主要元素包括:
- 横轴和纵轴:气泡图通常使用横轴和纵轴来表示两个变量的值。这些变量可以是数值型、分类型或时间型。
- 气泡大小:气泡图通过气泡的大小来表示第三个变量的值。通常,气泡的大小与该变量的值成正比,较大的气泡表示较大的数值。
- 气泡颜色:气泡图还可以使用颜色来表示第四个变量的值。不同的颜色可以用于区分不同的数据类别或者表示不同的数值范围。

2. 适用的场景
气泡图适用的分析场景包括:
- 多变量关系分析:气通过横轴、纵轴和气泡大小,可以同时呈现三个变量的信息,帮助我们发现变量之间的模式、趋势和相关性。
- 数据聚类和分类:气泡颜色可以用于区分不同的数据类别或者表示不同的数值范围。这使得气泡图在数据聚类和分类分析中非常有用,可以帮助我们识别出不同群组或类别之间的差异和相似性。
- 比较分析:用于比较不同类别或不同时间点的数据。通过气泡的大小和颜色,我们可以直观地比较多个变量的值,快速识别出具有较大或较小数值的数据点,从而帮助我们理解数据的分布和变化情况。
- 异常值检测:帮助我们快速识别出具有异常数值的数据点。通过比较气泡的大小和颜色,我们可以发现与其他数据点相比具有明显不同数值的数据,从而帮助我们识别和分析异常情况。
3. 不适用的场景
气泡图在以下情况可能不适用:
- 大数据集:当数据集非常庞大时,气泡图可能不适合展示所有数据点,因为过多的气泡可能会导致图表混乱不清。
- 单变量分析:如果只需要分析单个变量的分布或趋势,气泡图可能过于复杂,不是最佳选择。
- 离散数据:如果数据是离散的,而不是连续的数值型数据,气泡图可能无法有效地展示变量之间的关系。
4. 分析实战
本次使用气泡图分析 2021年中欧之间的贸易数据情况。
气泡图可以分析三个维度的对比:
- 进口额:横轴
- 出口额:纵轴
- 进出口总额:气泡大小
4.1. 数据来源
数据来源国家统计局公开的数据,整理好的数据可从下面的地址下载:
https://databook.top/nation/A06
用到的三个统计数据分别是:
- 中国同欧洲各国(地区)进出口总额:
A06050103.csv - 中国向欧洲各国(地区)出口总额:
A06050203.csv - 中国从欧洲各国(地区)进口总额:
A06050303.csv
fp = "d:/share/data/A06050103.csv"
df_total = pd.read_csv(fp)
fp = "d:/share/data/A06050203.csv"
df_output = pd.read_csv(fp)
fp = "d:/share/data/A06050303.csv"
df_input = pd.read_csv(fp)
4.2. 数据清理
数据清理步骤主要包括:
- 提取每个文件中2021年的数据
- 去除中欧整体的交易额数据,只保留和各个国家之间的贸易数据
- 合并进出口总额,进口额,出口额到一个数据集中
- 过滤多余字符,生成一个表示国家的数据列
#提取每个文件中2021年的数据
df = df_total[df_total["sj"] == 2021]
#去除中欧整体的交易额数据,只保留和各个国家之间的贸易数据
data = df.loc[2:, ["zbCN", "value"]]
#重新映射列的名称
data = data.rename(columns={"zbCN":"country", "value": "total"})
#过滤多余字符,生成一个表示国家的数据列
data["country"] = data["country"].str.replace("中国同", "", regex=False)
data["country"] = data["country"].str.replace("进出口总额(万美元)", "", regex=False)
df = df_input[df_input["sj"] == 2021]
#合并进出口总额,进口额,出口额到一个数据集中
data["input"] = df.loc[2:, ["value"]]
df = df_output[df_output["sj"] == 2021]
#合并进出口总额,进口额,出口额到一个数据集中
data["output"] = df.loc[2:, ["value"]]
data.head(5)

和欧洲的总体交易数据位于每个数据集的第一行,所用用 loc[2:, ...] 来过滤。
4.3. 分析结果可视化
with plt.style.context("seaborn-v0_8"):
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.scatter(
data["input"] / 10000,
data["output"] / 10000,
data["total"] / 10000,
c = np.random.rand(len(data)),
cmap="Accent",
alpha=0.6,
)
ax.set_xlabel("进口额(亿元)")
ax.set_ylabel("出口额(亿元)")
x = np.linspace(0, 1400, 7)
y = x
ax.plot(x, y, '-')

从图中可以看出:
横轴是进口额,纵轴是出口额,气泡越大,进出口总额越大。
中间的蓝色线表示进出口额度一样,可以看出,大部分国家都在蓝色线之上,
说明我国和大部分欧洲的贸易都是顺差。
左下角有很多小气泡,说明和大部分国家之间的进出口贸易额不高,也许是欧洲的小国家很多的缘故。
【matplotlib 实战】--气泡图的更多相关文章
- (转)matplotlib实战
原文:https://www.cnblogs.com/ws0751/p/8361330.html https://www.cnblogs.com/ws0751/p/8313017.html---mat ...
- matplotlib实战
plt.imshow(face_image.mean(axis=2),cmap='gray') 图片灰度处理¶ size = (m,n,3) 图片的一般形式就是这样的 rgb 0-255 jpg图 ...
- python学习之matplotlib实战2
import numpy as np import matplotlib.pyplot as plt def main(): #scatter fig = plt.figure() ax = fig. ...
- python学习之matplotlib实战
import numpy as np def main(): # print("hello") # line import matplotlib.pyplot as plt x = ...
- Matplotlib学习---用matplotlib画散点图,气泡图(scatter plot, bubble chart)
Matplotlib里有两种画散点图的方法,一种是用ax.plot画,一种是用ax.scatter画. 一. 用ax.plot画 ax.plot(x,y,marker="o",co ...
- 第一章:AI人工智能 の 数据预处理编程实战 Numpy, Pandas, Matplotlib, Scikit-Learn
本课主题 数据中 Independent 变量和 Dependent 变量 Python 数据预处理的三大神器:Numpy.Pandas.Matplotlib Scikit-Learn 的机器学习实战 ...
- 《机器学习实战-KNN》—如何在cmd命令提示符下运行numpy和matplotlib
问题背景:好吧,文章标题是瞎取得.平常用cmd运行python代码问题不大,我在学习<机器学习实战>这本书时,发现cmd无法运行import numpy as np以及import mat ...
- 数据可视化基础专题(十二):Matplotlib 基础(四)常用图表(二)气泡图、堆叠图、雷达图、饼图、
1 气泡图 气泡图和上面的散点图非常类似,只是点的大小不一样,而且是通过参数 s 来进行控制的,多的不说,还是看个示例: 例子一: import matplotlib.pyplot as plt im ...
- 数据可视化实例(五): 气泡图(matplotlib,pandas)
https://datawhalechina.github.io/pms50/#/chapter2/chapter2 关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也 ...
- python实战学习之matplotlib绘图续
学习完matplotlib绘图可以设置的属性,还需要学习一下除了折线图以外其他类型的图如直方图,条形图,散点图等,matplotlib还支持更多的图,具体细节可以参考官方文档:https://matp ...
随机推荐
- 创建属于自己的github、使用git提交、更新代码至github、写好readme
1. 在github上创建一个Repository 点击github网站,你可以用你的邮箱先注册一个账号. 点击New,转到创建一个repository的界面,如下图所示,你可以填写你的Reposit ...
- Code Generate V2.0 代码生成器
Code Generate 代码生成器 系统首页 使用说明 系统默认会根据SQL生成字段信息 className.fieldList.classComment 如下所示: 建表语句 CREATE TA ...
- 第一次用vs编译器进行第一次编程所遇问题
首先这款编译器具有多种语言:C#.C++.Java.Python等,这对像我一样的编程小白十分友好. 然后就是我第一天编程遇到的问题: 1."printf"未被定义 int a = ...
- MyBatis理论
MyBatis简介 MyBatis是什么? MyBatis是一款优秀的持久层框架,一个ORM(对象关系映射)框架,它支持定制化SQL.存储过程以及高级映射.MyBaits避免了几乎所有JDBC代码和手 ...
- virt-install 使用 qcow2格式虚拟机镜 、macvtap网卡
安装虚拟机 这里使用 amazn2 虚拟机镜像安装,根据官网文档,需要预先配置一个 seed.iso 文件 参考文档:https://docs.aws.amazon.com/zh_cn/AWSEC2/ ...
- Diffusers 一岁啦 !
十分高兴 Diffusers 迎来它的一岁生日!这是令人激动的一年,感谢社区和开源贡献者,我们对我们的工作感到十分骄傲和自豪.去年,文本到图像的模型,如 DALL-E 2, Imagen, 和 Sta ...
- python:时间模块dateutil
安装 pip install python-dateutil dateutil模块主要有两个函数,parser和rrule. 其中parser是根据字符串解析成datetime,而rrule则是根据定 ...
- Centos安装 Apache Benchmark
检查依赖包是否安装 1 rpm -qa|grep apr-util 2 3 rpm -qa|grep yum-utils 输出信息: 1 apr-util-1.5.2-6.el7.x86_64 2 y ...
- 让nodejs开启服务更简单--express篇
上一篇文章说到,nodejs获取客户端请求需要我们自己去处理请求参数.请求方式等,而在express框架内部集成了很多好用的方法,我们不需要从0开始编写各种处理逻辑,这样可以极大提高我们的开发效率~ ...
- [windows]远程桌面失败提示CredSSP加密修正
前言 windows远程桌面失败,提示"CredSSP加密--" 远程桌面服务器的系统版本:Windows Server 2016 本地电脑的系统版本:Windows 10 方式1 ...