P9481 [NOI2023] 贸易 题解
题目要求我们求出任意两点间最短路径之和,由于图比较特殊,除树边外只有祖先到其子树内的边,我们首先考虑最短路径有没有什么特殊性质。
注意到两点之间的最短路分为一下三种:
节点到其祖先的最短路:直接沿着树边向上走即可,否则一定会走多余的边,不是最优。
节点到其子树的最短路:此时最短路一定形如沿着树边走若干条边,再走一条非树边,走若干条树边如此交替进行,当然此处也可以连续走非树边。
两个节点没有祖先孩子关系的最短路:如果此时要从 \(u\) 点走到 \(v\) 点,由于图中没有横叉边,\(u\) 点必须要走到 \(\operatorname{lca}(u,v)\),否则一定无法通过非树边到 \(v\) 点,之后转为为从 \(\operatorname{lca}(u,v)\) 到 \(v\) 的第二类最短路。
这三条最短路都会经过 \(\operatorname{lca}(u,v)\),由于其唯一性,考虑枚举最近公共祖先统计答案,第二类是方便统计的,而此时第一类也已经被处理了,我们把第三类分为两部分:从 \(u\) 到 \(\operatorname{lca}(u,v)\) 和 从 \(\operatorname{lca}(u,v)\) 到 \(v\)。
第一段通过预处理即可解决,对于每个枚举到的 \(\operatorname{lca}\),由于树高是 \(\log\) 的,第二段路径所牵扯到的节点数也不会超过 \(N\log N\) 个,因此可以直接建反图暴力跑最短路统计,之后模仿点分治计算一遍即可。
代码中我对于每个 \(\operatorname{lca}\) 的子节点正序倒序分别枚举了一次,枚举到每颗子树时累加前面的子树走前半段,这颗子树走后半段的答案,即可保证不重不漏。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#define ll long long
#define N 700005
using namespace std;
const ll mod=998244353;
const ll inf=0x3f3f3f3f3f3f3f3f;
ll tot,dsum[N],dfn[N],ri[N],val[N],dis[N],vis[N],dep[N];
ll bel[N],siz[N],ans,ttp[N],sta[N],p,ct[N];
struct graph{
ll e,head[N],to[N],nex[N],edg[N];
void add(ll u,ll v,ll w){
to[++e]=v;nex[e]=head[u];head[u]=e;edg[e]=w;
}
void clear(){
for(ll i=1;i<=e;i++)head[i]=nex[i]=edg[i]=to[i]=0;
e=0;
}
}T,G;
struct edg{
ll u,v,w;
};
struct Node{
ll v,val;
bool operator <(const Node &x)const{
return val>x.val;
}
};
void adj(ll &x){
x=(((x%mod)+mod)%mod);
}
priority_queue<Node> q;
vector<edg> E[N];
void dfs(ll x){
dfn[x]=++tot;bel[tot]=x;siz[x]=1;
for(ll i=T.head[x];i;i=T.nex[i]){
ll v=T.to[i],w=T.edg[i];dep[v]=dep[x]+w;adj(dep[v]);dfs(v);
dsum[x]+=w*siz[v]+dsum[v];dsum[x]%=mod;
siz[x]+=siz[v];
}
ri[x]=tot;
}
void dij(ll s){
q.push((Node){s,0});dis[s]=0;
while(q.size()){
ll x=q.top().v;q.pop();if(vis[x]) continue;
vis[x]++;
for(ll i=G.head[x];i;i=G.nex[i]){
ll v=G.to[i],w=G.edg[i];
if(dis[v]>dis[x]+w){
dis[v]=dis[x]+w;
q.push((Node){v,dis[v]});
}
}
}
}
void dfs2(ll x){
G.clear();
for(ll i=dfn[x];i<=ri[x];i++){
dis[i]=inf;vis[i]=0;ans+=dep[bel[i]]-dep[x];adj(ans);
for(ll j=0;j<E[bel[i]].size();j++){
G.add(dfn[E[bel[i]][j].u],dfn[E[bel[i]][j].v],E[bel[i]][j].w);
}
G.add(dfn[bel[i]],dfn[bel[i]/2],val[bel[i]]);
}
ll tmp=x,tmp2=x/2,sumdis=0,sumsiz=1,cnt=0,tp=0;
while(tmp2){
G.add(dfn[tmp],dfn[tmp2],val[tmp]);
vis[dfn[tmp]]=0;dis[dfn[tmp]]=inf;tmp=tmp2;tmp2/=2;
}
vis[1]=0;dis[1]=inf;dij(dfn[x]);tmp=x;p=0;
for(ll i=T.head[x];i;i=T.nex[i]){
sta[++p]=i;ll v=T.to[i];tp=0;cnt=0;
for(ll j=dfn[v];j<=ri[v];j++){
if(dis[j]!=inf){
tp+=dis[j];adj(tp);cnt++;
}
}
ttp[v]=tp;ct[v]=cnt;
ans+=((sumsiz*tp)%mod)+((cnt*sumdis)%mod);adj(ans);
sumsiz+=siz[v];adj(sumsiz);
sumdis+=dsum[v]+((T.edg[i]*siz[v])%mod);adj(sumdis);
}
sumsiz=sumdis=0;
for(ll i=p;i>=1;i--){
ll j=sta[i],v=T.to[j];tp=ttp[v];cnt=ct[v];
ans+=((sumsiz*tp)%mod)+((cnt*sumdis)%mod);adj(ans);
sumsiz+=siz[v];adj(sumsiz);
sumdis+=dsum[v]+((T.edg[j]*siz[v])%mod);adj(sumdis);
}
for(ll i=dfn[x];i<=ri[x];i++)G.head[i]=dis[i]=0;
while(tmp){G.head[dfn[tmp]]=0;dis[dfn[tmp]]=0;tmp/=2;}
for(ll i=T.head[x];i;i=T.nex[i])dfs2(T.to[i]);
}
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*f;
}
int main(){
ll n,m,u,v,w;n=read();m=read();n=(1<<n)-1;
for(ll i=2;i<=n;i++){cin>>w;T.add((i/2),i,w);val[i]=w;}
for(ll i=1;i<=m;i++){
u=read();v=read();w=read();
E[v].push_back((edg){u,v,w});
}
dfs(1);dfs2(1);
cout<<ans;
}
P9481 [NOI2023] 贸易 题解的更多相关文章
- 「NOIP2009」最优贸易 题解
「NOIP2009」最优贸易 题解 题目TP门 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 ...
- 51NOD 1773:A国的贸易——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1773 参考1:FWT讲解 https://www.cnblogs.com ...
- NOIP 2009 最优贸易 题解
一道最短路的题,找一个买入和卖出相差最高的点即可,我们先以1为起点跑spfa,d1[x]不再表示距离而表示能够经过权值最小的节点的权值即 if(d1[y]>min(d1[x],price[y]) ...
- 洛谷 P1073 最优贸易 题解
题面 大家都是两遍SPFA吗?我这里就一遍dp啊: 首先判断对于一个点u,是否可以从一号点走到这里,并且可以从u走到n号点: 对于这样的点我们打上标记: 那么抛出水晶球的点一定是从打上标记的点中选出一 ...
- bzoj1205: [HNOI2005]星际贸易
题目链接 bzoj1205: [HNOI2005]星际贸易 题解 辣鸡题面,毁我青春 辣鸡题面,毁我青 辣鸡题面,毁我 辣鸡题面,毁 第一问,背包dp 第二问 问题转化为在一个序列上经过好多点走到终点 ...
- 【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)
次元传送门:洛谷P1073 思路 一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下 因为每个城市可以走好几次 所以说我们可以在图上 ...
- 【luogu P1073 最优贸易】 题解
题目链接:https://www.luogu.org/problemnew/show/P1073 对于状态量相互影响的题目,分层图是个不错的想法. 考虑在题目中分为: 不交易: 直接从1到n出去,为0 ...
- 题解【luogu1073 最优贸易】
Solution 考虑原图是 DAG 时怎么做. 拓扑排序 + dp ,令 dp[i] 表示 \(1\) 到 \(i\) 的路径上最小的卖出价格.转移方程就是对每一个可以到达这个点的 dp 取个 mi ...
- noip2009提高组题解
NOIP2009题解 T1:潜伏者 题目大意:给出一段密文和破译后的明文,一个字母对应一个密文字母,要求破译一段密文,如果有矛盾或有未出现密文无法破译输出failed,否则输出明文. 思路:纯模拟题 ...
- 历年NOIP选题题解汇总
联赛前上vijos板刷往年联赛题,使用在线编辑编写代码,祝我rp++. 废话不多说,挑比较有意思的记一下. 题目是按照年份排序的,最早只到了03年. 有些题目因为 我还没写/很早之前写的忘了 所以就没 ...
随机推荐
- RabbitMQ 中 exchange、route、queue 的关系
从 AMQP 协议可以看出,MessageQueue.Exchange 和 Binding 构成了 AMQP 协议的核心,下面我们就围绕这三个主要组件 从应用使用的角度全面的介绍如何利用 Rabbit ...
- Error: Could not open client transport with JDBC Uri: jdbc:hive2://localhost:10000: java.net.ConnectException: 拒绝连接 (Connection refused) (state=08S01,code=0)
一:启动hiveserver2服务 二:启动beeline 三:连接hiveserver2(下面的1000000端口号适当改小写因为其超出最大端口号的范围建议改为10000) 如果启动不成功实现我们先 ...
- VMware 备份操作系统
在VMware 中备份方式有两种:快照和克隆. 快照:又称还原点,就是保存在拍快照时系统的状态,包含所有内容.在之后的使用中,随时都可以恢复.[短期备份,需要频繁备份时,使用该方法.操作的虚拟系统一般 ...
- 洛谷 P1387 最大正方形 题解
方法1 二分+暴力+前缀和Check 注意细节 通过二维前缀和判定矩形内是否全为1,计算和等于长度的平方就判断为是 复杂度\(\Theta (n^2\log{n})\) #include <bi ...
- [golang]使用gopsutil获取系统信息
前言 在python中有个psutil库用于获取系统信息,而go语言也有一个类似的库--gopsutil,功能差不多. 项目地址:https://github.com/shirou/gopsutil ...
- 安装iTerm2和oh-my-zsh
安装iTerm2和oh-my-zsh 此文是在参考许多教程(见目录:参考)并结合本人安装经历写下的一篇关于iTerm2和oh-my-zsh的认识和超级详细安装教程.全文所有图片均为本人截屏拍摄.希望能 ...
- 重要变更 | Hugging Face Hub 的 Git 操作不再支持使用密码验证
在 Hugging Face,我们一直致力于提升服务安全性,因此,我们将对通过 Git 与 Hugging Face Hub 交互时的认证方式进行更改.从 2023 年 10 月 1 日 开始,我们将 ...
- 4.go语言复合类型简述
目录 1. 本章前瞻 2.来自leetcode的例题 描述 分析 题解 3. 复合类型新版本的变化 3.1 string和[]byte的高效转化 3.2 内置函数clear 4. 复合类型概述 4.1 ...
- Azure Data Factory(七)数据集验证之用户托管凭证
一,引言 上一篇文章中,我们讲解了 Azure Data Factory 在设置数据集类型为 Dataverse 的时候,如何连接测试.今天我们继续讲解认证方式这一块内容,打开 Link Servi ...
- Modbus转profinet网关连接位移计在1200程序控制案例
Modbus转profinet网关连接位移计在1200程序控制案例 本案例讲述了兴达易控Modbus转profinet网关(XD-MDPN100)连接现场用台达LD-E镭射位移计检测控制在1200PL ...