GPU 分布式使用教程之 Pytorch

Pytorch 官方推荐使用 DistributedDataParallel(DDP) 模块来实现单机多卡和多机多卡分布式计算。DDP 模块涉及了一些新概念,如网络(World Size/Local Rank),代码修改(数据分配加载),多种启动方式(torchrun/launch),使用前请参考官方文档以及更多学习资料

选择机器

  • 单机多卡分布式:租用同个计算节点的多张卡即可。

  • 多机多卡分布式:需要先申请开通 分布式集群 功能,点击这里申请开通,在租用时,请选择带有如图所示图标的机器。没有这个图标的机器不支持加入分布式网络。

单机多卡

1)租用机器: 为实现Pytorch的单机多卡分布式,首先,您需要按正常流程租用GPU,如单节点 4 卡 A2000,选择Pytorch镜像,如Pytorch 1.12镜像。

租用的时候 GPU 数设置成 4,即表示 4 卡,对应显存、内存等配置也会翻倍。

2)适配代码: 分布式需对脚本进行相应修改,可参考官方文档。此处使用开源demo.py

3)运行代码: 进入运行脚本所在目录,输入命令行,如:

cd /mnt/test/multi-card/torch
python -m torch.distributed.launch --nproc_per_node=4 mnmc_ddp_launch.py

这里使用的是 launch 启动方式,也可使用torchrun以及其他启动方式。--nproc_per_node 指定每个节点的GPU数量,mnmc_ddp_launch.py 为执行脚本文件(如需下载 cifar10 数据集,修改download=True)。

4)查看GPU使用情况: 租用界面点击详情按钮即可查看 GPU、CPU使用情况。从截图中可以看到 4 个显卡都有使用到。

多机多卡

多机多卡使用需要先申请开通 分布式集群 功能,点击这里申请开通

1)租用机器: 首先,您需要按正常流程租用 GPU,主机市场筛选栏选择 支持分布式集群 筛选,然后选择自己需要的机器租用即可。

如两个计算节点,租用两台 A2000 4 卡,共计 8 卡。选择相同的Pytorch镜像,如Pytorch 1.12。

注意: 多机多卡中每个节点的 GPU 卡数应该一样,才能都使用上,机器类型也最好一样。

2)创建集群: 进入 【个人中心】 — 【我的租用】 — 【分布式集群】

分布式集群需要先进行申请,申请通过后,点击【添加集群】- 【添加机器】—【确定】。

3)添加机器: 点击集群页面添加机器按钮,勾选要加入集群的机器,点击确定,即可将租用机器添加到集群。

添加机器成功后,系统会给每个节点分配集群 IP,当状态为已连接时,代表机器间可相互通信。

4)添加机器: 登录任一节点。因秘钥由您掌握,故需由您按以下步骤完成节点间的ssh连通:

ssh-keygen -t rsa # 一路默认,生成公私钥
ssh-copy-id root@其他节点IP #分发给其他节点,输入对应秘钥。IP可在我的集群页面查看,如192.168.1.1

5)添加以下环境变量: 在每一个节点,使用 ifconfig 命令查询节点网卡名称,如 meth01,meth02。登陆各个节点添加相同环境变量(可用 ssh 登录)

export NCCL_SOCKET_IFNAME=meth919,meth920
export GLOO_IFACE=meth919,meth920
export NCCL_DEBUG=INFO #可选,如需获得额外的nccl信息

可以将以上内容添加到~/.bashrc文件中(meth917 meth918记得改成自己的网卡名称)。

6)适配代码: 分布式需对脚本进行相应修改,可参考官方文档。此处使用开源demo.py

6)运行程序: 登录主节点,进入运行脚本所在目录,输入命令行,如:

cd /mnt/test/multi-card/torch
python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr="192.168.1.2" --master_port=12345 mnmc_ddp_launch.py

--nproc_per_node 指定每个节点的GPU数量,每个节点GPU数量应该一样,不然无法运行成功,--nnodes 指定节点数(总共2个节点),--node_rank 指定节点顺序(主节点故为0号),--master_addr和master_port 设定主节点ip和端口号。demo.py 为执行脚本(如需下载cifar10数据集,修改download=True)。

登录剩余节点,运行:

cd /mnt/test/multi-card/torch
python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=1 --master_addr="192.168.1.2" --master_port=12345 mnmc_ddp_launch.py

其中,--node_rank 指定节点顺序(第二个节点故为1号),如有更多节点,需做相应修改,其他参数不用修改。运行后,系统会自动连接并运行训练任务。

7)查看GPU使用情况: 租用界面点击详情按钮即可查看 GPU、CPU使用情况。

矩池云 | GPU 分布式使用教程之 Pytorch的更多相关文章

  1. 使用 MobaXterm 连接矩池云 GPU服务器

    Host Name(主机名):hz.matpool.com 或 hz-t2.matpool.com,请以您 SSH 中给定的域名为准. Port(端口号):矩池云租用记录里 SSH 链接里冒号后的几位 ...

  2. 解决矩池云GPU显存未释放问题

    很多用户反馈说终止程序之后,显存依然被占用,这里我们提供了两种解决方案,帮助用户解决这个问题. nvidia-smi查看 我们可以先用如下命令 nvidia-smi 查看一下当前GPU进程情况. _ ...

  3. 使用 Xshell 连接矩池云 GPU服务器

    下单租用 租用成功 打开软件 完成 错误用法不能这样使用

  4. 矩池云 | 高性价比的GPU租用深度学习平台

    矩池云是一个专业的国内深度学习云平台,拥有着良好的深度学习云端训练体验.在性价比上,我们以 2080Ti 单卡为例,36 小时折扣后的价格才 55 元,每小时单价仅 1.52 元,属于全网最低价.用户 ...

  5. 矩池云升级JupyterLab版本教程

    先使用 Xshell 连接矩池云 GPU服务器,可以查看教程. 要在base环境下执行,用下面命令 conda deactivate ps -aux | grep jupyter 我这个进程是616 ...

  6. 如何使用 PuTTY 远程连接矩池云主机

    PuTTY 是一款开源的连接软件,用来远程连接服务器,支持 SSH.Telnet.Serial 等协议. 矩池云的主机支持 SSH 登录,以下为使用 PuTTY 连接矩池云 GPU 的使用教程. 如您 ...

  7. 矩池云 | 新冠肺炎防控:肺炎CT检测

    连日来,新型冠状病毒感染的肺炎疫情,牵动的不仅仅是全武汉.全湖北,更是全国人民的心,大家纷纷以自己独特的方式为武汉加油!我们相信坚持下去,终会春暖花开. 今天让我们以简单实用的神经网络模型,来检测肺炎 ...

  8. 矩池云 | 教你如何使用GAN为口袋妖怪上色

    在之前的Demo中,我们使用了条件GAN来生成了手写数字图像.那么除了生成数字图像以外我们还能用神经网络来干些什么呢? 在本案例中,我们用神经网络来给口袋妖怪的线框图上色. 第一步: 导入使用库 fr ...

  9. 矩池云上使用nvidia-smi命令教程

    简介 nvidia-smi全称是NVIDIA System Management Interface ,它是一个基于NVIDIA Management Library(NVML)构建的命令行实用工具, ...

  10. 矩池云里查看cuda版本

    可以用下面的命令查看 cat /usr/local/cuda/version.txt 如果想用nvcc来查看可以用下面的命令 nvcc -V 如果环境内没有nvcc可以安装一下,教程是矩池云上如何安装 ...

随机推荐

  1. ccs3动画-div向上移动的动画

    <head> <meta charset="UTF-8"> <meta name="viewport" content=" ...

  2. VictoriaMetrics源码阅读:极端吝啬,vm序列化数据到磁盘的细节

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu 公众号:一本正经的瞎扯 源码请看:https://github.com/ahfuzhang/vi ...

  3. svn忽略某个目录后update出现fetching

    忽略某个子目录 在svn udpate一个大目录时忽略特定的子目录,主要是子目录下内容已经单独拉取过,并且这个大目录对于程序来说,可以是只读的. 操作方法:选中要忽略的目录,右键 svn - Unve ...

  4. python2和python3的版本历史及入门书籍

    python版本历史 我们端游项目使用是python2.7版本 32位 python2 2.7.18 last version on 2020.4.20 2.7 first version on 20 ...

  5. 3.6 Windows驱动开发:内核进程汇编与反汇编

    在笔者上一篇文章<内核MDL读写进程内存>简单介绍了如何通过MDL映射的方式实现进程读写操作,本章将通过如上案例实现远程进程反汇编功能,此类功能也是ARK工具中最常见的功能之一,通常此类功 ...

  6. 用arr.filter数组去重

    let res = arr.filter((item,index,arr)=>{ //返回找到的下标,等于 下标 return arr.indexOf(item) === index; }) c ...

  7. CF1921F Sum of Progression 题解

    题目链接:CF 或者 洛谷 一道经典的类型题,把这种类型的题拿出来单独说一下. 注意到问题中涉及到需要维护 \(a_{x+k\times step}\) 这样的信息,这样的信息很难用树型结构维护,比较 ...

  8. 知乎利用 JuiceFS 给 Flink 容器启动加速实践

    本文作者胡梦宇,知乎大数据架构开发工程师,主要负责知乎内部大数据组件的二次开发和数据平台建设. 背景 Flink 因为其可靠性和易用性,已经成为当前最流行的流处理框架之一,在流计算领域占据了主导地位. ...

  9. 7.函数的使用--《Python编程:从入门到实践》

    7.1 python 中函数的定义   python 中函数使用 def 定义: def greet_user(): 7.2 传参的传递   普通实参的传毒,可以与 C++ 相同,即按顺序传递. 7. ...

  10. ASP.NET Core分布式项目实战(Consent视图制作)--学习笔记

    任务19:Consent视图制作 按照上一节 Consent 的思路 在 mvcCookieAuthSample 项目的 Controllers 文件夹下新建一个 ConsentController ...