Problem Statement

A box contains $N$ balls, each with an integer between $1$ and $M-1$ written on it.
For $i = 1, 2, \ldots, N$, the integer written on the $i$-th ball is $A_i$.

While the box has two or more balls remaining, Takahashi will repeat the following.

  • First, choose two balls arbitrarily.
  • Then, get a score equal to the remainder when $x^y + y^x$ is divided by $M$, where $x$ and $y$ are the integers written on the two balls.
  • Finally, choose one of the two balls arbitrarily, eat it, and return the other to the box.

Print the maximum possible total score Takahashi will get.

Constraints

  • $2 \leq N \leq 500$
  • $2 \leq M \leq 10^9$
  • $1 \leq A_i \leq M-1$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $A_2$ $\ldots$ $A_N$

Output

Print the answer.


Sample Input 1

4 10
4 2 3 2

Sample Output 1

20

Consider the following scenario. Below, $X \bmod Y$ denotes the remainder when a non-negative integer $X$ is divided by a positive integer $Y$.

  1. Take the first and third balls from the box to score $(4^3 + 3^4) \bmod 10 = 5$ points. Then, eat the first ball and return the third to the box. Now, the box has the second, third, and fourth balls.
  2. Take the third and fourth balls from the box to score $(3^2 + 2^3) \bmod 10 = 7$ points. Then, eat the third ball and return the fourth to the box. Now, the box has the second and fourth balls.
  3. Take the second and fourth balls from the box to score $(2^2 + 2^2) \bmod 10 = 8$ points. Then, eat the second ball and return the fourth to the box. Now, the box has just the fourth ball.

Here, Takahashi scores a total of $5 + 7 + 8 = 20$ points, which is the maximum possible value.


Sample Input 2

20 100
29 31 68 20 83 66 23 84 69 96 41 61 83 37 52 71 18 55 40 8

Sample Output 2

1733

做的时候硬是没看出这题,写个题解纪念一下。

如果我们把同选两个数 \(x,y\) 看作连一条边,那么最后会连出一棵树。此时从叶子节点选起,按照拓扑的方式往上走,选完后就把叶子节点删去,这就是一种按顺序取完这棵树的一种构造。那么这棵树的代价就是他的边权和。

反观这道题,其实就是一个最大生成树。暴力建边,跑kruskal就行了。

#include<bits/stdc++.h>
using namespace std;
const int N=505;
int n,m,a[N],k,fa[N];
long long ans;
int find(int x)
{
if(fa[x]==x)
return x;
return fa[x]=find(fa[x]);
}
int pow(int x,int y)
{
if(!y)
return 1;
int k=pow(x,y>>1);
if(y&1)
return 1LL*k*k%m*x%m;
return 1LL*k*k%m;
}
struct edge{
int u,v,w;
bool operator<(const edge&e)const{
return w>e.w;
}
}e[N*N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",a+i),fa[i]=i;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
e[++k]=(edge){i,j,(pow(a[i],a[j])+pow(a[j],a[i]))%m};
sort(e+1,e+k+1);
for(int i=1;i<=k;i++)
{
// printf("%d %d %d\n",e[i].u,e[i].v,e[i].w);
if(find(e[i].u)!=find(e[i].v))
fa[find(e[i].u)]=find(e[i].v),ans+=e[i].w;
}
printf("%lld",ans);
}

[ABC282E] Choose Two and Eat One的更多相关文章

  1. HHKB Programming Contest 2022 Winter(AtCoder Beginner Contest 282)

    前言 好久没有打 AtCoder 了.有点手生.只拿到了 \(\operatorname{rk}1510\),应该上不了多少分. 只切了 \(\texttt{A,B,C,D}\) 四题. A - Ge ...

  2. Eat the Trees hdu 1693

    Problem DescriptionMost of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  3. How the Microsoft Bot Framework Changed Where My Friends and I Eat: Part 1

    Bots are everywhere nowadays, and we interact with them all of the time. From interactions on our ph ...

  4. 【HDU】1693:Eat the Trees【插头DP】

    Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  5. HDU 1693 Eat the Trees(插头DP,入门题)

    Problem Description Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  6. HDU1693 Eat the Trees —— 插头DP

    题目链接:https://vjudge.net/problem/HDU-1693 Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Mem ...

  7. Mybatis的choose when otherwise

    <select id="getCount" resultType="int"> select count(1) from <choose> ...

  8. mybatis:choose when otherwise标签

    choose标签是按顺序判断其内部when标签中的test条件是否成立,如果有一个成立,则 choose 结束. 当 choose 中所有 when 的条件都不满则时,则执行 otherwise 中的 ...

  9. 理解 OpenStack + Ceph (9): Ceph 的size/min_size/choose/chooseleaf/scrubbing/repair 等概念

    本系列文章会深入研究 Ceph 以及 Ceph 和 OpenStack 的集成: (1)安装和部署 (2)Ceph RBD 接口和工具 (3)Ceph 物理和逻辑结构 (4)Ceph 的基础数据结构 ...

  10. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. Linux下后台运行Java程序

    1.背景描述 用Java编写了一个程序(可执行的jar),需要在Linux中启动并持续运行 1.1.直接执行程序 直接执行程序后,在程序执行期间,无法在当前会话中再执行其他操作 1.2.直接执行程序后 ...

  2. svg动画 - 波浪动画

    波浪 <path d="M 96.1271 806.2501 C 96.1271 806.2501 241.441 755.7685 384.5859 755.7685 C 529.8 ...

  3. AI绘画StableDiffusion:云端在线版免费使用笔记分享-Kaggle版

    玩AI绘画(SD),自己电脑配置不够?今天给大家介绍一下如何baipiao在线版AI绘画StableDiffusion. Kaggle 是世界上最大的数据科学社区,拥有强大的工具和资源,可帮助您实现数 ...

  4. Mybatis插件功能

    1 插件的作用 在Mybatis执行SQL的生命周期中,会使用插件进行埋点,主要包括Executor.StatementHandler.ParameterHandler和ResultSetHandle ...

  5. 《SQLi-Labs》02. Less 6~10

    @ 目录 索引 Less-6 题解 原理 Less-7 题解 Less-8 题解 Less-9 题解 原理 Less-10 题解 sqli.开启新坑. 索引 Less-6:布尔盲注,字符型[" ...

  6. xlwt写入excel时候的合并单元格

    简单版 import xlwt workbook = xlwt.Workbook() worksheet = workbook.add_sheet('My sheet') # 合并第0行的第0列到第3 ...

  7. DevSecOps之应用安全测试工具及选型

    上篇文章,有同学私信想了解有哪些DevSecOps工具,这里整理出来,供大家参考(PS: 非专业安全人士,仅从DevOps建设角度,给出自己见解) 软件中的漏洞和弱点很常见:84%的软件漏洞都是利用应 ...

  8. Confluence的Excel插件Elements Spreadsheet安装

    背景 Confluence是现在广泛使用的团队协作文档系统.虽然自身带了一些表格编辑功能,但表格的整体功能较弱,比如不能通过Excel文件进行导入导出,表格在复制到Excel时格式会比较奇怪等等.对于 ...

  9. CVE-2018-8120 漏洞复现

    CVE-2018-8120 漏洞复现 漏洞描述 win32k.sys中函数 SetImeInfoEx未对指针进行合法性检查,从而导致一个任意地址写. 漏洞分析 漏洞成因 int __stdcall S ...

  10. 一文弄懂TypeScript中的混合

    1.前言 由于TypeScrip中的类不支持多继承,所以引入了混合(Mixin)的特性,可以间接实现继承的效果. 2.正文 // 声明一个汽车类Vehicle,它有drive方法 class Vehi ...