Problem Statement

A box contains $N$ balls, each with an integer between $1$ and $M-1$ written on it.
For $i = 1, 2, \ldots, N$, the integer written on the $i$-th ball is $A_i$.

While the box has two or more balls remaining, Takahashi will repeat the following.

  • First, choose two balls arbitrarily.
  • Then, get a score equal to the remainder when $x^y + y^x$ is divided by $M$, where $x$ and $y$ are the integers written on the two balls.
  • Finally, choose one of the two balls arbitrarily, eat it, and return the other to the box.

Print the maximum possible total score Takahashi will get.

Constraints

  • $2 \leq N \leq 500$
  • $2 \leq M \leq 10^9$
  • $1 \leq A_i \leq M-1$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $A_2$ $\ldots$ $A_N$

Output

Print the answer.


Sample Input 1

4 10
4 2 3 2

Sample Output 1

20

Consider the following scenario. Below, $X \bmod Y$ denotes the remainder when a non-negative integer $X$ is divided by a positive integer $Y$.

  1. Take the first and third balls from the box to score $(4^3 + 3^4) \bmod 10 = 5$ points. Then, eat the first ball and return the third to the box. Now, the box has the second, third, and fourth balls.
  2. Take the third and fourth balls from the box to score $(3^2 + 2^3) \bmod 10 = 7$ points. Then, eat the third ball and return the fourth to the box. Now, the box has the second and fourth balls.
  3. Take the second and fourth balls from the box to score $(2^2 + 2^2) \bmod 10 = 8$ points. Then, eat the second ball and return the fourth to the box. Now, the box has just the fourth ball.

Here, Takahashi scores a total of $5 + 7 + 8 = 20$ points, which is the maximum possible value.


Sample Input 2

20 100
29 31 68 20 83 66 23 84 69 96 41 61 83 37 52 71 18 55 40 8

Sample Output 2

1733

做的时候硬是没看出这题,写个题解纪念一下。

如果我们把同选两个数 \(x,y\) 看作连一条边,那么最后会连出一棵树。此时从叶子节点选起,按照拓扑的方式往上走,选完后就把叶子节点删去,这就是一种按顺序取完这棵树的一种构造。那么这棵树的代价就是他的边权和。

反观这道题,其实就是一个最大生成树。暴力建边,跑kruskal就行了。

#include<bits/stdc++.h>
using namespace std;
const int N=505;
int n,m,a[N],k,fa[N];
long long ans;
int find(int x)
{
if(fa[x]==x)
return x;
return fa[x]=find(fa[x]);
}
int pow(int x,int y)
{
if(!y)
return 1;
int k=pow(x,y>>1);
if(y&1)
return 1LL*k*k%m*x%m;
return 1LL*k*k%m;
}
struct edge{
int u,v,w;
bool operator<(const edge&e)const{
return w>e.w;
}
}e[N*N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",a+i),fa[i]=i;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
e[++k]=(edge){i,j,(pow(a[i],a[j])+pow(a[j],a[i]))%m};
sort(e+1,e+k+1);
for(int i=1;i<=k;i++)
{
// printf("%d %d %d\n",e[i].u,e[i].v,e[i].w);
if(find(e[i].u)!=find(e[i].v))
fa[find(e[i].u)]=find(e[i].v),ans+=e[i].w;
}
printf("%lld",ans);
}

[ABC282E] Choose Two and Eat One的更多相关文章

  1. HHKB Programming Contest 2022 Winter(AtCoder Beginner Contest 282)

    前言 好久没有打 AtCoder 了.有点手生.只拿到了 \(\operatorname{rk}1510\),应该上不了多少分. 只切了 \(\texttt{A,B,C,D}\) 四题. A - Ge ...

  2. Eat the Trees hdu 1693

    Problem DescriptionMost of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  3. How the Microsoft Bot Framework Changed Where My Friends and I Eat: Part 1

    Bots are everywhere nowadays, and we interact with them all of the time. From interactions on our ph ...

  4. 【HDU】1693:Eat the Trees【插头DP】

    Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  5. HDU 1693 Eat the Trees(插头DP,入门题)

    Problem Description Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  6. HDU1693 Eat the Trees —— 插头DP

    题目链接:https://vjudge.net/problem/HDU-1693 Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Mem ...

  7. Mybatis的choose when otherwise

    <select id="getCount" resultType="int"> select count(1) from <choose> ...

  8. mybatis:choose when otherwise标签

    choose标签是按顺序判断其内部when标签中的test条件是否成立,如果有一个成立,则 choose 结束. 当 choose 中所有 when 的条件都不满则时,则执行 otherwise 中的 ...

  9. 理解 OpenStack + Ceph (9): Ceph 的size/min_size/choose/chooseleaf/scrubbing/repair 等概念

    本系列文章会深入研究 Ceph 以及 Ceph 和 OpenStack 的集成: (1)安装和部署 (2)Ceph RBD 接口和工具 (3)Ceph 物理和逻辑结构 (4)Ceph 的基础数据结构 ...

  10. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. SSM登录操作

    1.编写实体类 略 2. 写mapper映射文件 通过名字查询 通过ID主键查询... 略 写dao CRUD相关抽象方法 List<Student> getAll(); Student ...

  2. Python 基础面试第二弹

    1. 解释下Python中的面向对象,以及面向对象的三大特点: 在Python中,面向对象编程(Object-Oriented Programming,简称OOP)是一种编程范式,它将数据和操作数据的 ...

  3. 搭建企业知识库:基于 Wiki.js 的实践指南

    一.简介 在当今知识经济时代,企业知识库的建设变得越来越重要.它不仅有助于企业知识的沉淀和共享,还能提升员工的工作效率,促进企业的创新发展.企业知识库是企业中形成结构化文档,共享知识的集群,可以促进企 ...

  4. 关于.Net 6.0 在Linux ,Docker容器中,不安装任何依赖就生成图形验证码!!!!!!!!!!!

    在.Net Framework时代,我们生成验证码大多都是用System.Drawing. 在.Net 6中使用也是没有问题的. 但是,System.Drawing却依赖于Windows GDI+. ...

  5. 其它——各主流Linux系统解决pip安装mysqlclient报错

    文章目录 一 CentOS(红帽) 二 Ubuntu 三 Windows 一 CentOS(红帽) #CentOS有Python.Mysql的开发工具包,安装后使用pip安装mysqlclient即可 ...

  6. Python基础——函数的理解、函数对象、函数嵌套、闭包函数、及其应用

    文章目录 函数也是变量 可以赋值 可以当做函数当做参数传给另外一个函数 可以当做函数当做另外一个函数的返回值 可以当做容器类型的一个元素 函数对象应用示范 原始版 修正版 函数嵌套 函数的嵌套调用 函 ...

  7. Python来源介绍

    python来源 1.1 Python来源 1989年的圣诞节,一位来自荷兰,名叫Guidio van Rossum的年轻帅小伙子,为了打发无趣的时光,决定改善他参与设计,不是很满意的ABC语言,随着 ...

  8. vscode自动格式化python代码符合pep8

    vscode自动格式化python代码符合pep8 安装格式化工具打开命令行窗口安装以下工具 $ pip install -U flake8$ pip install -U autopep812在VS ...

  9. 【CISCN2019 华北赛区 Day1 Web1】Dropbox 1

    一.[CISCN2019 华北赛区 Day1 Web1]Dropbox 1 看题 首先是需要注册登录,然后进入是一个文件上传和下载的页面.尝试php一句话木马和burp抓包修改后缀的木马都失败,看来是 ...

  10. 如何在 Ubuntu上使用snap安装Docker

    1 检查系统版本 具有sudo或root用户权限 2 安装 SNAP ctrl+alt+T 打开终端 运行以下命令以安装 SNAP sudo apt update sudo apt install s ...