Problem Statement

A box contains $N$ balls, each with an integer between $1$ and $M-1$ written on it.
For $i = 1, 2, \ldots, N$, the integer written on the $i$-th ball is $A_i$.

While the box has two or more balls remaining, Takahashi will repeat the following.

  • First, choose two balls arbitrarily.
  • Then, get a score equal to the remainder when $x^y + y^x$ is divided by $M$, where $x$ and $y$ are the integers written on the two balls.
  • Finally, choose one of the two balls arbitrarily, eat it, and return the other to the box.

Print the maximum possible total score Takahashi will get.

Constraints

  • $2 \leq N \leq 500$
  • $2 \leq M \leq 10^9$
  • $1 \leq A_i \leq M-1$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $A_2$ $\ldots$ $A_N$

Output

Print the answer.


Sample Input 1

4 10
4 2 3 2

Sample Output 1

20

Consider the following scenario. Below, $X \bmod Y$ denotes the remainder when a non-negative integer $X$ is divided by a positive integer $Y$.

  1. Take the first and third balls from the box to score $(4^3 + 3^4) \bmod 10 = 5$ points. Then, eat the first ball and return the third to the box. Now, the box has the second, third, and fourth balls.
  2. Take the third and fourth balls from the box to score $(3^2 + 2^3) \bmod 10 = 7$ points. Then, eat the third ball and return the fourth to the box. Now, the box has the second and fourth balls.
  3. Take the second and fourth balls from the box to score $(2^2 + 2^2) \bmod 10 = 8$ points. Then, eat the second ball and return the fourth to the box. Now, the box has just the fourth ball.

Here, Takahashi scores a total of $5 + 7 + 8 = 20$ points, which is the maximum possible value.


Sample Input 2

20 100
29 31 68 20 83 66 23 84 69 96 41 61 83 37 52 71 18 55 40 8

Sample Output 2

1733

做的时候硬是没看出这题,写个题解纪念一下。

如果我们把同选两个数 \(x,y\) 看作连一条边,那么最后会连出一棵树。此时从叶子节点选起,按照拓扑的方式往上走,选完后就把叶子节点删去,这就是一种按顺序取完这棵树的一种构造。那么这棵树的代价就是他的边权和。

反观这道题,其实就是一个最大生成树。暴力建边,跑kruskal就行了。

#include<bits/stdc++.h>
using namespace std;
const int N=505;
int n,m,a[N],k,fa[N];
long long ans;
int find(int x)
{
if(fa[x]==x)
return x;
return fa[x]=find(fa[x]);
}
int pow(int x,int y)
{
if(!y)
return 1;
int k=pow(x,y>>1);
if(y&1)
return 1LL*k*k%m*x%m;
return 1LL*k*k%m;
}
struct edge{
int u,v,w;
bool operator<(const edge&e)const{
return w>e.w;
}
}e[N*N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",a+i),fa[i]=i;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
e[++k]=(edge){i,j,(pow(a[i],a[j])+pow(a[j],a[i]))%m};
sort(e+1,e+k+1);
for(int i=1;i<=k;i++)
{
// printf("%d %d %d\n",e[i].u,e[i].v,e[i].w);
if(find(e[i].u)!=find(e[i].v))
fa[find(e[i].u)]=find(e[i].v),ans+=e[i].w;
}
printf("%lld",ans);
}

[ABC282E] Choose Two and Eat One的更多相关文章

  1. HHKB Programming Contest 2022 Winter(AtCoder Beginner Contest 282)

    前言 好久没有打 AtCoder 了.有点手生.只拿到了 \(\operatorname{rk}1510\),应该上不了多少分. 只切了 \(\texttt{A,B,C,D}\) 四题. A - Ge ...

  2. Eat the Trees hdu 1693

    Problem DescriptionMost of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  3. How the Microsoft Bot Framework Changed Where My Friends and I Eat: Part 1

    Bots are everywhere nowadays, and we interact with them all of the time. From interactions on our ph ...

  4. 【HDU】1693:Eat the Trees【插头DP】

    Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  5. HDU 1693 Eat the Trees(插头DP,入门题)

    Problem Description Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  6. HDU1693 Eat the Trees —— 插头DP

    题目链接:https://vjudge.net/problem/HDU-1693 Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Mem ...

  7. Mybatis的choose when otherwise

    <select id="getCount" resultType="int"> select count(1) from <choose> ...

  8. mybatis:choose when otherwise标签

    choose标签是按顺序判断其内部when标签中的test条件是否成立,如果有一个成立,则 choose 结束. 当 choose 中所有 when 的条件都不满则时,则执行 otherwise 中的 ...

  9. 理解 OpenStack + Ceph (9): Ceph 的size/min_size/choose/chooseleaf/scrubbing/repair 等概念

    本系列文章会深入研究 Ceph 以及 Ceph 和 OpenStack 的集成: (1)安装和部署 (2)Ceph RBD 接口和工具 (3)Ceph 物理和逻辑结构 (4)Ceph 的基础数据结构 ...

  10. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. AI绘画Stable Diffusion实战操作: 62个咒语调教-时尚杂志封面

    今天来给大家分享,如何用sd简单的咒语输出好看的图片的教程,今天做的是时尚杂志专题,话不多说直入主题. 还不会StableDiffusion的基本操作,推荐看看这篇保姆级教程: AI绘画:Stable ...

  2. [超详细]SpringBoot整合WebSocket

    1. 什么是WebSocket? WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议,它允许在浏览器和服务器之间进行实时的.双向的通信.相对于传统的基于请求和响应的 HTTP 协议, ...

  3. Go 上下文的理解与使用

    为什么需要 context 在 Go 程序中,特别是并发情况下,由于超时.取消等而引发的异常操作,往往需要及时的释放相应资源,正确的关闭 goroutine.防止协程不退出而导致内存泄露.如果没有 c ...

  4. 【题解】AtCoder Beginner Contest 318(D - Ex)

    赛时过了 A-G,Ex 仿佛猜到了结论但是完全不懂多项式科技,就炸了. 大家好像都秒了 A,B,C 就不写了. D.General Weighted Max Matching 题目描述: 给你一个加权 ...

  5. 提高 Web 开发效率的10个VS Code扩展插件,你知道吗?

    前言 一个出色的开发工具可以显著提高开发人员的开发效率,而优秀的扩展插件则能更进一步地提升工具的效率.在前端开发领域,VSCode毫无疑问是目前最受欢迎的开发工具.为了帮助前端开发人员提高工作效率,今 ...

  6. yum&二进制安装PostgreSQL 12

    一.yum安装&配置PostgreSQL 12 目录 一.yum安装&配置PostgreSQL 12 一.前言 1.本文主要内容 2.本文环境信息与适用范围 二.PostgreSQL安 ...

  7. 谈谈JSF业务线程池的大小配置

    1.简介 JSF业务线程池使用JDK的线程池技术,缺省情况下采用Cached模式(核心线程数20,最大线程数200).此外,还提供了Fixed固定线程大小的模式,两种模式均可设置请求队列大小. 本文旨 ...

  8. 15种实时uv实现方案系列(附源码)之一:Flink基于set实时uv统计

    UVStatMultiPlans(GitHub)项目持续收集各种高性能实时uv实现方案并对各种实现方案的优缺点进行对比分析! 需求描述 统计每分钟用户每个页面的uv访问量. Kafka数据格式 {&q ...

  9. 探秘移动端BI:发展历程与应用前景解析

    什么是移动端BI 维基百科 上对于 移动端商业智能的定义是这样的 > Mobile BI is a system that presents historical and real-time i ...

  10. 织梦tag怎么显示每个tag相应的文章数量

    有些时候我们想实现类似于wordpress那样的tag,就是在显示tag的链接和tag名的同时,还能显示每个tag关联的文章的数量.如下图所示: 这就需要修改/include/taglib/tag.l ...