3 基于梯度的攻击——MIM
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf
1.MIM攻击的原理
MIM攻击全称是 Momentum Iterative Method,其实这也是一种类似于PGD的基于梯度的迭代攻击算法。它的本质就是,在进行迭代的时候,每一轮的扰动不仅与当前的梯度方向有关,还与之前算出来的梯度方向相关。其中的衰减因子就是用来调节相关度的,decay_factor在(0,1)之间,decay_factor越小,迭代轮数靠前算出来的梯度对当前的梯度方向影响越小。由于之前的梯度对后面的迭代也有影响,迭代的方向不会跑偏,总体的大方向是对的。
为了加速梯度下降,通过累积损失函数的梯度方向上的矢量,从而(1)稳定更新(2)有助于通过 narrow valleys, small humps and poor local minima or maxima.(大致意思就是,可以有效避免局部最优)

是decay_factor, 另外,在原论文中,每一次迭代对x的导数是直接算的1-范数,然后求平均,但在各个算法库以及论文实现的补充中,并没有求平均,估计这个对结果影响不太大。
2.代码实现
class MomentumIterativeAttack(Attack, LabelMixin):
"""
The L-inf projected gradient descent attack (Dong et al. 2017).
The attack performs nb_iter steps of size eps_iter, while always staying
within eps from the initial point. The optimization is performed with
momentum.
Paper: https://arxiv.org/pdf/1710.06081.pdf
""" def __init__(
self, predict, loss_fn=None, eps=0.3, nb_iter=40, decay_factor=1.,
eps_iter=0.01, clip_min=0., clip_max=1., targeted=False):
"""
Create an instance of the MomentumIterativeAttack. :param predict: forward pass function.
:param loss_fn: loss function.
:param eps: maximum distortion.
:param nb_iter: number of iterations
:param decay_factor: momentum decay factor.
:param eps_iter: attack step size.
:param clip_min: mininum value per input dimension.
:param clip_max: maximum value per input dimension.
:param targeted: if the attack is targeted.
"""
super(MomentumIterativeAttack, self).__init__(
predict, loss_fn, clip_min, clip_max)
self.eps = eps
self.nb_iter = nb_iter
self.decay_factor = decay_factor
self.eps_iter = eps_iter
self.targeted = targeted
if self.loss_fn is None:
self.loss_fn = nn.CrossEntropyLoss(reduction="sum") def perturb(self, x, y=None):
"""
Given examples (x, y), returns their adversarial counterparts with
an attack length of eps. :param x: input tensor.
:param y: label tensor.
- if None and self.targeted=False, compute y as predicted
labels.
- if self.targeted=True, then y must be the targeted labels.
:return: tensor containing perturbed inputs.
"""
x, y = self._verify_and_process_inputs(x, y) delta = torch.zeros_like(x)
g = torch.zeros_like(x) delta = nn.Parameter(delta) for i in range(self.nb_iter): if delta.grad is not None:
delta.grad.detach_()
delta.grad.zero_() imgadv = x + delta
outputs = self.predict(imgadv)
loss = self.loss_fn(outputs, y)
if self.targeted:
loss = -loss
loss.backward() g = self.decay_factor * g + normalize_by_pnorm(
delta.grad.data, p=1)
# according to the paper it should be .sum(), but in their
# implementations (both cleverhans and the link from the paper)
# it is .mean(), but actually it shouldn't matter delta.data += self.eps_iter * torch.sign(g)
# delta.data += self.eps / self.nb_iter * torch.sign(g) delta.data = clamp(
delta.data, min=-self.eps, max=self.eps)
delta.data = clamp(
x + delta.data, min=self.clip_min, max=self.clip_max) - x rval = x + delta.data
return rval
有人认为,advertorch中在迭代过程中,应该是对imgadv求导,而不是对delta求导,foolbox和cleverhans的实现都是对每一轮的对抗样本求导。
3 基于梯度的攻击——MIM的更多相关文章
- 4.基于梯度的攻击——MIM
MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf 1.MIM攻击的原理 MIM攻击全称是 Momentum Iterative Method,其实这也是 ...
- 2.基于梯度的攻击——FGSM
FGSM原论文地址:https://arxiv.org/abs/1412.6572 1.FGSM的原理 FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境 ...
- 1 基于梯度的攻击——FGSM
FGSM原论文地址:https://arxiv.org/abs/1412.6572 1.FGSM的原理 FGSM的全称是Fast Gradient Sign Method(快速梯度下降法),在白盒环境 ...
- 3.基于梯度的攻击——PGD
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可 ...
- 2 基于梯度的攻击——PGD
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可 ...
- 5.基于优化的攻击——CW
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf 1.CW攻击的原理 CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母.首先还是贴出攻击算法的公 ...
- 基于梯度场和Hessian特征值分别获得图像的方向场
一.我们想要求的方向场的定义为: 对于任意一点(x,y),该点的方向可以定义为其所在脊线(或谷线)位置的切线方向与水平轴之间的夹角: 将一条直线顺时针或逆时针旋转 180°,直线的方向保持不变. 因 ...
- 4 基于优化的攻击——CW
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf 1.CW攻击的原理 CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母.首先还是贴出攻击算法的公 ...
- C / C ++ 基于梯度下降法的线性回归法(适用于机器学习)
写在前面的话: 在第一学期做项目的时候用到过相应的知识,觉得挺有趣的,就记录整理了下来,基于C/C++语言 原贴地址:https://helloacm.com/cc-linear-regression ...
随机推荐
- Subarray Sorting (线段树)
题意:给你两个长度为 n 的序列 a 和 b , 可以对 a 进行 操作: 选择一段区间[ l, r ] ,使得序列a 在这段区间里 按升序排序. 可以对a 进行任意多次操作,问 a是否有可能变成b序 ...
- cx_freeze multiprocessing 打包后反复重启
写了给flask程序,此外还需要用multiprocessing 启动一个守护进程. 不打包一切正常,用cx_freeze打包后,发现flask反复重启.任务管理器里这个GUI窗口的进程数不断增加. ...
- CCPC-Wannafly & Comet OJ 夏季欢乐赛(2019)F
题面 F比较友善(相较于E),我们发现如果i和j是满足条件的两个下标,那么: a[i]-2*b[i] + a[j]-2*b[j] >=0 或者 b[i]-2*a[i] + b[j]-2*a[j] ...
- JAVA中java.lang.OutOfMemoryError常见的解决方式
在开发中我们很多人都遇到过内存溢出的情况,其实内存溢出分几种形式: 1.tomcat中java.lang.OutOfMemoryError: PermGen space异常处理(最常见的) 概念大家可 ...
- Volatile关键字的两个作用
1.保证修饰的变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个值,新值对于其他线程来说是可以立即得知的. 2.禁止指令重新排序化
- 如何卸载zabbix且删除
1.彻底卸载zabbix和删除残留文件 1 2 [root@localhost etc]# service zabbix stop //这个命令是停止服务 [root@localhost et ...
- pyton3的数字操作你都会用吗?
'''数字数据类型用于存储数值.数据类型是不允许改变的,这就意味着如果改变数字数据类型的值,将重新分配空间. 1.del(用于删除一些数字对象的引用) 2.整形(int)通常被称为是整形或者整数,是正 ...
- SRS之RTMP的TCP线程(即监听线程)
本文分析的是 SRS 针对 rtmp 的端口建立的 tcp 线程.具体建立过程: SRS之监听端口的管理:RTMP RTMP 的 TCP 线程中各个类之间 handler 的关系图 1. RTMP之T ...
- layui template list
//第一步:编写模版.你可以使用一个script标签存放模板,如: <script id="demo" type="text/html"> < ...
- Java-内存模型(JSR-133)
Java 内存模型(Java Memory Model,JMM)看上去和 Java 内存结构(JVM 运行时内存结构)差不多,但这两者并不是一回事.JMM 并不像 JVM 内存结构一样是真实存在的,它 ...