这道题与2018年十二省联考中的异或粽子很相像,可以算作一个简易版;

因为这不需要可持久化;

也就是说求任意两个数异或起来的第k大值;

首先把所有数放进trie里。

然后二分答案,枚举每个数,相应地在trie上从高位开始跑,统计答案。

具体做法:当前跑到二进制第k位,已经确定了比k高的位的数字,使得每一位与当前枚举的数的异或等于mid的这一位。

如果mid第k位为0,那么这一位异或为1的一定对答案有贡献,把整个子树的答案加起来。然后继续做下一位。

时间复杂度O(nlog^2n)

#include <bits/stdc++.h>
using namespace std;
const int maxn=50005,maxm=200005,M=15;
typedef long long LL;
int n,a[maxn],l,r,mid;
LL m,ans,sum[maxm],t;
char c;
int read()
{
for (c=getchar();c<'0' || c>'9';c=getchar());
int x=c-48;
for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x;
}
void insert(int x,int num,int w)
{
sum[x]++;
if (w<0) return;
if ((num&(1<<w))==0) insert(x<<1,num,w-1);else insert(x<<1|1,num,w-1);
}
int query(int x,int num,int w,int now)
{
if (w<0) return sum[x];
int t=((num&(1<<w))>0);
if ((now&(1<<w))==0) return query(x<<1|t,num,w-1,now)+sum[x<<1|(t^1)];
return query(x<<1|(t^1),num,w-1,now);
}
bool check(int x)
{
if (!x) return 1;
ans=0;
for (int i=0;i<n;i++) ans+=query(1,a[i],M,x);
if (ans>=m) return 1;
return 0;
}
int main()
{
scanf("%d%lld",&n,&m);
for (int i=0;i<n;i++) insert(1,a[i]=read(),M);
for (l=0,r=(1<<(M+1))-1,mid=r>>1;l<r;mid=l+r>>1)
if (check(mid)) l=mid+1;else r=mid;
if (!check(l)) l--;
printf("%d\n",l);
fclose(stdin); fclose(stdout);
return 0;
}

第k大异或值的更多相关文章

  1. Loj 114 k大异或和

    Loj 114 k大异或和 构造线性基时有所变化.试图构造一个线性基,使得从高到低位走,异或上一个非 \(0\) 的数,总能变大. 构造时让任意两个 \(bas\) 上有值的 \(i,j\) ,满足 ...

  2. 【线性基】51nod1312 最大异或和&LOJ114 k大异或和

    1312 最大异或和 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 难度:7级算法题   有一个正整数数组S,S中有N个元素,这些元素分别是S[0] ...

  3. LibreOJ #114. k 大异或和

    二次联通门 : LibreOJ #114. k 大异或和 /* LibreOJ #114. k 大异或和 WA了很多遍 为什么呢... 一开始读入原数的时候写的是for(;N--;) 而重新构造线性基 ...

  4. [LOJ#114]k 大异或和

    [LOJ#114]k 大异或和 试题描述 这是一道模板题. 给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 T⊆S,使得集合 T 在 S 的所有非空子集的不同的异或和中,其异或和  ...

  5. LOJ.114.K大异或和(线性基)

    题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基, ...

  6. LOJ114 k大异或和

    传送门 (vjudge和hdu也有但是我觉得LOJ好看!而且限制少!) 不过本题描述有误,应该是k小. 首先我们需要对线性基进行改造.需要把每一位改造成为,包含最高位的能异或出来的最小的数. 为啥呢? ...

  7. 线性基求第k小异或值

    题目链接 题意:给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 \(T \subseteq S\), 使得集合 T 在 S 的所有非空子集的不同的异或和中, 其异或和 \(T_1 ...

  8. 【loj114】k大异或和 线性基+特判

    题目描述 给由 $n​$ 个数组成的一个可重集 $S​$ ,每次给定一个数 $k​$ ,求一个集合 $T⊆S​$ ,使得集合 $T​$ 在 $S​$ 的所有非空子集的不同的异或和中,其异或和 $T_1 ...

  9. hdu 3949 第k大异或组合

    题意: 给你一些数,其中任选一些数(大于等于一个),那么他们有一个异或和. 求所有这样的异或和的第k小. 我们可以将每一位看成一维,然后就是给我们n个60维的向量,求它们线性组合后得到的向量空间中,第 ...

随机推荐

  1. codeforces#1150D. Three Religions(dp+序列自动机)

    题目链接: https://codeforces.com/contest/1150/problem/D 题意: 给出长度为$n$的字符串,和$q$次询问 每次询问是,给$x$宗教增加一个字符$key$ ...

  2. Leetcode题目56.合并区间(中等)

    题目描述: 给出一个区间的集合,请合并所有重叠的区间. 示例 1: 输入: [[1,3],[2,6],[8,10],[15,18]] 输出: [[1,6],[8,10],[15,18]] 解释: 区间 ...

  3. dubbo服务层面上的负载均衡和高可用

    dubbo上的服务层可以做集群,来达到负载均衡和高可用,很简单,只需要在不同的服务器节点上向同一个zk(内网环境)注册相同的服务 注意就是,消费者不能在同一个zk做这种集群操作的 转载请注明博客出处: ...

  4. LeetCode 221. 最大正方形(Maximal Square)

    题目描述 在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积. 示例: 输入: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 输出: ...

  5. 黑马vue---21-22、总结

    黑马vue---21-22.总结 一.总结 一句话总结: · 在 VM 实例中,如果要访问 data 上的数据,或者要访问 methods 中的方法, 必须带 this · 在 v-for 要会使用 ...

  6. Difference between C# compiler version and language version

    Difference between C# compiler version and language version     As nobody gives a good enough answer ...

  7. 树及其衍生算法(Trees and tree algorithms)

    1,二叉树(Binary tree) 二叉树:每一个节点最多两个子节点,如下图所示: 相关概念:节点Node,路径path,根节点root,边edge,子节点 children,父节点parent,兄 ...

  8. 升级到Android Studio3.x遇到的问题及解决方案

    升级到Android Studio3.x遇到的问题及解决方案 转 https://www.2cto.com/kf/201711/695736.html 升级到Android Studio3.0遇到的问 ...

  9. java 语言实现豆瓣电影信息查询

    豆瓣上面有很多电影,有时候要查看个电影信息,去豆瓣搜下还是很方便的,但是如何通过接口的形式来查看豆瓣电影,这对于很多网站.app其实是非常实用的功能,这里笔者附上一个java实现的豆瓣电影信息获取的代 ...

  10. [转]Java Jacob操作Excel

    Jacob项目:https://sourceforge.net/projects/jacob-project/ 转自:https://blog.csdn.net/ZY_extreme/article/ ...