[JZOJ5400]:Repulsed(贪心+树形DP)
题目描述
小$w$心里的火焰就要被熄灭了。
简便起见,假设小$w$的内心是一棵$n-1$条边,$n$个节点的树。
现在你要在每个节点里放一些个灭火器,每个节点可以放任意多个。
接下来每个节点都要被分配给一个至多$k$条边远的灭火器,每个灭火器最多能分配给$s$个节点。
至少要多少个灭火器才能让小$w$彻底死心呢?
输入格式
第一行三个整数$n,s,k$。
接下来$n-1$行每行两个整数表示一条边。
输出格式
一行一个整数表示答案
样例
样例输入:
10 10 3
1 8
2 3
1 5
2 4
1 2
8 9
8 10
5 6
5 7
样例输出:
1
数据范围与提示
对于$20\%$的数据满足$n\leqslant 100,k\leqslant 2$。
对于另外$20\%$的数据满足$k=1$。
对于另外$20\%$的数据满足$s=1$。
对于$100\%$的数据满足$n\leqslant 10^5,k\leqslant 20,s\leqslant 10^9$。
题解
先来考虑贪心,依次选还没有被覆盖的深度最大的点一定更优,这个用一个堆维护就好啦。
但是可能存在灭火器交集很大的情况。
再来考虑$DP$,设$G[x][k]$表示$x$下面距离为$k$的需要灭火器的房间数,$F[x][k]$表示$x$下面距离为$k$的多余灭火器数。
首先$G[x][k]$要与$F[x][0]$匹配。
还要注意可以跨国$LCA$,所以$G[x][i]$也可以与$F[x][k-i]$匹配,$G[x][i]$与$F[x][k-i-1]$匹配。
那么有转移:
$$F[u][i]=\sum\limits_vF[v][i-1]$$
$$G[u][i]=\sum\limits_vG[v][i+1]$$
初始化$F[x][i]=G[x][i]=1$即可。
匹配的时候用指针维护就好了。
时间复杂度:$\Theta(nk)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
struct rec{int nxt,to;}e[200000];
int head[100001],cnt;
int n,s,k;
int f[100001][21],g[100001][21];
bool vis[100001];
int ans,sum;
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfs(int x)
{
vis[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
if(vis[e[i].to])continue;
dfs(e[i].to);
for(int j=1;j<=k;j++)
{
f[x][j]+=f[e[i].to][j-1];
g[x][j-1]+=g[e[i].to][j];
g[x][j-1]=min(g[x][j-1],n);
}
}
f[x][0]++;
if(f[x][k])
{
int tmp=(ceil)((double)f[x][k]/s);
ans+=tmp;
g[x][k]+=min(tmp*s,n)-f[x][k];
f[x][k]=0;
}
int fail=k;
for(int i=k;~i;i--)
while(f[x][i]&&fail>=i)
{
int flag=min(f[x][i],g[x][fail]);
f[x][i]-=flag;g[x][fail]-=flag;
if(!g[x][fail])fail--;
}
}
int main()
{
scanf("%d%d%d",&n,&s,&k);
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
dfs(1);
for(int i=0;i<=k;i++)sum+=f[1][i];
ans+=(ceil)((double)sum/s);
printf("%d",ans);
return 0;
}
rp++
[JZOJ5400]:Repulsed(贪心+树形DP)的更多相关文章
- 联赛模拟测试25 C. Repulsed 贪心+树形DP
题目描述 分析 考虑自底向上贪心 \(f[x][k]\) 表示 \(x\) 下面距离为 \(k\) 的需要灭火器的房间数,\(g[x][k]\) 表示 \(x\) 下面距离为 \(k\) 的多余灭火器 ...
- bzoj 1907: 树的路径覆盖【贪心+树形dp】
我是在在做网络流最小路径覆盖的时候找到这道题的 然后发现是个贪心+树形dp \( f[i] \)表示在\( i \)为根的子树中最少有几条链,\( v[i] \) 表示在\( i \)为根的子树中\( ...
- CSP模拟赛 Repulsed(树形DP)
题面 ⼩ w ⼼⾥的⽕焰就要被熄灭了. 简便起⻅,假设⼩ w 的内⼼是⼀棵 n − 1 条边,n 个节点的树. 现在你要在每个节点⾥放⼀些个灭⽕器,每个节点可以放任意多个. 接下来每个节点都要被分配给 ...
- 【模拟8.11】将军令(贪心&&树形DP)
只看45分的话,是树形DP....(当然也有能拿到70分+的大佬) 40分: 只考虑k==1的情况,树形DP 所以每个节点可能被父亲,自己,儿子控制 设f[MAXN][3],0表示儿子,1表示自己,2 ...
- BZOJ 4027:[HEOI2015]兔子与樱花(贪心+树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4027 [题目大意] 樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1 ...
- P2279 [HNOI2003]消防局的设立 贪心or树形dp
题目描述 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成了一个巨大的树状 ...
- CF 463A && 463B 贪心 && 463C 霍夫曼树 && 463D 树形dp && 463E 线段树
http://codeforces.com/contest/462 A:Appleman and Easy Task 要求是否全部的字符都挨着偶数个'o' #include <cstdio> ...
- 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心
题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...
- 51nod 1812 树的双直径 题解【树形DP】【贪心】
老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 ...
随机推荐
- [js]$.ajax标准写法
$.ajax({ url:"http://www.microsoft.com", //请求的url地址 dataType:"json", ...
- WCF寄宿windows服务二
如果有很多WCF服务需要寄宿,需要额外做一些工作:总体思路是:先把这些WCF服务的程序集打包,然后利用反射加载各个WCF服务的程序集,按顺序一个一个寄宿.先来看看我们需要寄宿的WCF服务: 实现步骤: ...
- WebStorm 使用技巧
常用快捷键 代码编辑 ctrl + d:复制行 ctrl + y:删除行 ctrl + x:剪切行 ctrl + shift + ↑: 行移动 ctrl + shift + enter: 换行 ctr ...
- java开发环境构建
一. 基本工具安装 1. 配置终端命令别名 vim ~/.bash_profile *********************************************** # for colo ...
- java技术面试之面试题大全
转载自:http://blog.csdn.net/lijizhi19950123/article/details/77679489 Java 面试知识点总结 本篇文章会对面试中常遇到的Java技术点进 ...
- js数组的所有方法
修改器方法 下面的这些方法会改变调用它们的对象自身的值: Array.prototype.copyWithin() 在数组内部,将一段元素序列拷贝到另一段元素序列上,覆盖原有的值. Array.pr ...
- Bootstrap常用的自带插件
Bootstrap自带的那些常用插件. 模态框 模态框的HTML代码放置的位置 务必将模态框的HTML代码放在文档的最高层级内(也就是说,尽量作为 body 标签的直接子元素),以避免其他组件影响模态 ...
- EEPROM原理详解
EEPROM(Electrically Erasable Programmable read only memory)即电可擦可编程只读存储器,是一种掉电后数据不丢失(不挥发)存储芯片. EERPOM ...
- linux中centos6.9环境下的python3.6和pip的安装
安装python3.6可能使用的依赖# yum install openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel sqli ...
- Python——print函数输出对齐问题
原创声明:本文系博主原创文章,转载及引用请注明出处. 当我们使用print函数时,若指定输出宽度,例如: >>> import math >>> print('|P ...