题目描述

  小$w$心里的火焰就要被熄灭了。
  简便起见,假设小$w$的内心是一棵$n-1$条边,$n$个节点的树。
  现在你要在每个节点里放一些个灭火器,每个节点可以放任意多个。
  接下来每个节点都要被分配给一个至多$k$条边远的灭火器,每个灭火器最多能分配给$s$个节点。
  至少要多少个灭火器才能让小$w$彻底死心呢?


输入格式

  第一行三个整数$n,s,k$。
  接下来$n-1$行每行两个整数表示一条边。


输出格式

  一行一个整数表示答案


样例

样例输入:

10 10 3
1 8
2 3
1 5
2 4
1 2
8 9
8 10
5 6
5 7

样例输出:

1


数据范围与提示

  对于$20\%$的数据满足$n\leqslant 100,k\leqslant 2$。
  对于另外$20\%$的数据满足$k=1$。
  对于另外$20\%$的数据满足$s=1$。
  对于$100\%$的数据满足$n\leqslant 10^5,k\leqslant 20,s\leqslant 10^9$。


题解

先来考虑贪心,依次选还没有被覆盖的深度最大的点一定更优,这个用一个堆维护就好啦。

但是可能存在灭火器交集很大的情况。

再来考虑$DP$,设$G[x][k]$表示$x$下面距离为$k$的需要灭火器的房间数,$F[x][k]$表示$x$下面距离为$k$的多余灭火器数。

首先$G[x][k]$要与$F[x][0]$匹配。

还要注意可以跨国$LCA$,所以$G[x][i]$也可以与$F[x][k-i]$匹配,$G[x][i]$与$F[x][k-i-1]$匹配。

那么有转移:

$$F[u][i]=\sum\limits_vF[v][i-1]$$

$$G[u][i]=\sum\limits_vG[v][i+1]$$

初始化$F[x][i]=G[x][i]=1$即可。

匹配的时候用指针维护就好了。

时间复杂度:$\Theta(nk)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
struct rec{int nxt,to;}e[200000];
int head[100001],cnt;
int n,s,k;
int f[100001][21],g[100001][21];
bool vis[100001];
int ans,sum;
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfs(int x)
{
vis[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
if(vis[e[i].to])continue;
dfs(e[i].to);
for(int j=1;j<=k;j++)
{
f[x][j]+=f[e[i].to][j-1];
g[x][j-1]+=g[e[i].to][j];
g[x][j-1]=min(g[x][j-1],n);
}
}
f[x][0]++;
if(f[x][k])
{
int tmp=(ceil)((double)f[x][k]/s);
ans+=tmp;
g[x][k]+=min(tmp*s,n)-f[x][k];
f[x][k]=0;
}
int fail=k;
for(int i=k;~i;i--)
while(f[x][i]&&fail>=i)
{
int flag=min(f[x][i],g[x][fail]);
f[x][i]-=flag;g[x][fail]-=flag;
if(!g[x][fail])fail--;
}
}
int main()
{
scanf("%d%d%d",&n,&s,&k);
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
dfs(1);
for(int i=0;i<=k;i++)sum+=f[1][i];
ans+=(ceil)((double)sum/s);
printf("%d",ans);
return 0;
}

rp++

[JZOJ5400]:Repulsed(贪心+树形DP)的更多相关文章

  1. 联赛模拟测试25 C. Repulsed 贪心+树形DP

    题目描述 分析 考虑自底向上贪心 \(f[x][k]\) 表示 \(x\) 下面距离为 \(k\) 的需要灭火器的房间数,\(g[x][k]\) 表示 \(x\) 下面距离为 \(k\) 的多余灭火器 ...

  2. bzoj 1907: 树的路径覆盖【贪心+树形dp】

    我是在在做网络流最小路径覆盖的时候找到这道题的 然后发现是个贪心+树形dp \( f[i] \)表示在\( i \)为根的子树中最少有几条链,\( v[i] \) 表示在\( i \)为根的子树中\( ...

  3. CSP模拟赛 Repulsed(树形DP)

    题面 ⼩ w ⼼⾥的⽕焰就要被熄灭了. 简便起⻅,假设⼩ w 的内⼼是⼀棵 n − 1 条边,n 个节点的树. 现在你要在每个节点⾥放⼀些个灭⽕器,每个节点可以放任意多个. 接下来每个节点都要被分配给 ...

  4. 【模拟8.11】将军令(贪心&&树形DP)

    只看45分的话,是树形DP....(当然也有能拿到70分+的大佬) 40分: 只考虑k==1的情况,树形DP 所以每个节点可能被父亲,自己,儿子控制 设f[MAXN][3],0表示儿子,1表示自己,2 ...

  5. BZOJ 4027:[HEOI2015]兔子与樱花(贪心+树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4027 [题目大意] 樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1 ...

  6. P2279 [HNOI2003]消防局的设立 贪心or树形dp

    题目描述 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成了一个巨大的树状 ...

  7. CF 463A && 463B 贪心 && 463C 霍夫曼树 && 463D 树形dp && 463E 线段树

    http://codeforces.com/contest/462 A:Appleman and Easy Task 要求是否全部的字符都挨着偶数个'o' #include <cstdio> ...

  8. 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心

    题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...

  9. 51nod 1812 树的双直径 题解【树形DP】【贪心】

    老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 ...

随机推荐

  1. mybatis-plus使用Oracle函数生成主键

    函数的调用方式为: select pkg1.fun1 from dual; mybatis-plus一般会使用的主键生成策略为: @Bean public OracleKeyGenerator ora ...

  2. 1 sql server 中cursor的简介

    1.游标的分类 游标共有3类:API服务器游标.Transaction-SQL游标和API客户端游标. 2 API服务器cursor共有如下几种 静态游标的完整结果集将打开游标时建立的结果集存储在临时 ...

  3. java反射浅谈 part1--反射机制的定义,作用,原理

    一.定义 在运行过程中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:还可以通过反射创建对象,这种动态获取的信息以及动态调用对象的方法的功能称为 ...

  4. JavaWeb【七、JSP状态管理】

    http协议无状态性 当提交请求,服务器返回响应.但当同一用户同一浏览器再次提交请求,服务器并不知道与刚才的请求是同一用户浏览器发起. 保存用户状态的两大机制 Session-保存在服务器端 Cook ...

  5. JavaJDBC【二、Mysql包加载与使用】

    连接数据库前提条件是: 1.加载mysql驱动 2.获取连接 加载驱动前需要将mysql的jar包引入项目 Demo: package JDBC; import java.sql.DriverMana ...

  6. dedecms 上传目录路径

    DedeCms已经升级到5.7版本了..可惜附件的目录还是不统一,比如我们从后台把附件目录调整为Ym(默认为Ymd)然而我们的附件路径依然是不一样的比如:Ymd代表年月日从文章里上传路径为:/Ym/1 ...

  7. 开源you-get项目爬虫,以及基于python+selenium的自动测试利器

    写在前面 爬虫和自动测试,对于python来说是最合适不过也是最擅长的. 开源的项目也很多,例如you-get项目https://github.com/soimort/you-get.盗链和爬虫神器. ...

  8. js数组的所有方法

    修改器方法 下面的这些方法会改变调用它们的对象自身的值: Array.prototype.copyWithin()  在数组内部,将一段元素序列拷贝到另一段元素序列上,覆盖原有的值. Array.pr ...

  9. 在不同的Linux发行版上安装TFTP Server

    http://www.davidsudjiman.info/2006/03/27/installing-and-setting-tftpd-in-ubuntu/ http://www.cybercit ...

  10. Redis07-Redis单节点容量问题,twemproxy,predixy的使用

    Redis单节点容量问题 一.单节点容量问题 我们在实际场景中,往往遇上一个单节点容量问题. 1.进行业务拆分,数据分类 2.到了数据不能拆分的时候,可以进行数据分片 进行哈希取模(影响分布式下的扩展 ...