3673: 可持久化并查集 by zky

Time Limit: 5 Sec Memory Limit: 128 MB

Description

n个集合 m个操作

操作:

1 a b 合并a,b所在集合

2 k 回到第k次操作之后的状态(查询算作操作)

3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

0<=n,m<=2*10^4

Input

Output

Sample Input

5 6

1 1 2

3 1 2

2 0

3 1 2

2 1

3 1 2

Sample Output

1

0

1

HINT

Source

出题人大SB

/*
可持久化线段树+启发式合并.
可持久化线段树维护当前状态下集合的关系和秩的信息.
所谓的秩就是以该元素为代表元的所有元素中的最大深度.
然后按秩合并的目的是为了降常.
每个叶节点维护一颗线段树
合并的时候在权值线段树的子节点加一个数,
相当于连了一条边 表示有关系存在.
要先查询要将合并两个元素的父亲所在位置.
显然只有在两个集合秩相同时才更新秩.
*/
#include<iostream>
#include<cstdio>
#define MAXN 20001
using namespace std;
int n,m,tot,root[MAXN],s[MAXN];
struct data{int lc,rc,deep,x;}tree[MAXN*20];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void build(int &k,int l,int r)
{
k=++tot;
if(l==r){tree[k].x=l;return ;}
int mid=(l+r)>>1;
build(tree[k].lc,l,mid);
build(tree[k].rc,mid+1,r);
return ;
}
int query(int k,int l,int r,int x)
{
if(l==r) return k;
int mid=(l+r)>>1;
if(x<=mid) return query(tree[k].lc,l,mid,x);
else return query(tree[k].rc,mid+1,r,x);
}
int find(int root,int x)
{
int p=query(root,1,n,x);
if(x==tree[p].x) return p;
else return find(root,tree[p].x);
}
void change(int &k,int last,int l,int r,int x,int y)
{
k=++tot;tree[k].lc=tree[last].lc,tree[k].rc=tree[last].rc;
if(l==r) {
tree[k].x=y;tree[k].deep=tree[last].deep;
return ;
}
int mid=(l+r)>>1;
if(x<=mid) change(tree[k].lc,tree[last].lc,l,mid,x,y);
else change(tree[k].rc,tree[last].rc,mid+1,r,x,y);
return ;
}
void updata(int k,int l,int r,int x)
{
if(l==r){tree[k].deep++;return ;}
int mid=(l+r)>>1;
if(x<=mid) updata(tree[k].lc,l,mid,x);
else updata(tree[k].rc,mid+1,r,x);
return ;
}
void union_s(int l1,int l2,int i)
{
if(tree[l1].deep>tree[l2].deep) swap(l1,l2);
change(root[i],root[i-1],1,n,tree[l1].x,tree[l2].x);
if(tree[l1].deep==tree[l2].deep) updata(root[i],1,n,tree[l2].x);
return ;
}
int main()
{
int x,y,z,l1,l2;
n=read(),m=read();
build(root[0],1,n);
for(int i=1;i<=m;i++)
{
z=read();
if(z==1)
{
x=read(),y=read();
root[i]=root[i-1];
l1=find(root[i],x),l2=find(root[i],y);
if(tree[l1].x!=tree[l2].x) union_s(l1,l2,i);
}
else if(z==2) x=read(),root[i]=root[x];
else {
x=read(),y=read();
root[i]=root[i-1];
l1=find(root[i],x),l2=find(root[i],y);
if(l1==l2) printf("1\n");
else printf("0\n");
}
}
return 0;
}

Bzoj 3673: 可持久化并查集 by zky(主席树+启发式合并)的更多相关文章

  1. BZOJ 3674 可持久化并查集加强版(主席树变形)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 2515  Solved: 1107 [Submit][Sta ...

  2. BZOJ 3673 可持久化并查集 by zky && BZOJ 3674 可持久化并查集加强版 可持久化线段树

    既然有了可持久化数组,就有可持久化并查集.. 由于上课讲过说是只能按秩合并(但是我也不确定...),所以就先写了按秩合并,相当于是维护fa[]和rk[] getf就是在这棵树中找,直到找到一个点的fa ...

  3. bzoj 3673 可持久化并查集 by zky

    Description n个集合 m个操作操作:1 a b 合并a,b所在集合2 k 回到第k次操作之后的状态(查询算作操作)3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0<n ...

  4. 3673: 可持久化并查集 by zky

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2170  Solved: 978[Submit][Status ...

  5. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  6. 2019.01.21 bzoj3674: 可持久化并查集加强版(主席树+并查集)

    传送门 题意:维护可持久化并查集,支持在某个版本连边,回到某个版本,在某个版本 询问连通性. 思路: 我们用主席树维护并查集fafafa数组,由于要查询历史版本,因此不能够用路径压缩. 可以考虑另外一 ...

  7. BZOJ 3673: 可持久化并查集(可持久化并查集+启发式合并)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3673 题意: 思路: 可持久化数组可以用可持久化线段树来实现,并查集的查询操作和原来的一般并查集操作 ...

  8. bzoj 3673 可持久化并查集

    本质上是维护两个可持久化数组,用可持久化线段树维护. /************************************************************** Problem: ...

  9. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

随机推荐

  1. Scala 面向对象编程之Trait

    将trait作为接口使用 // Scala中的Triat是一种特殊的概念 // 首先我们可以将Trait作为接口来使用,此时的Triat就与Java中的接口非常类似 // 在triat中可以定义抽象方 ...

  2. Codeforces Round #419 (Div. 1) (ABCD)

    1. 815A Karen and Game 大意: 给定$nm$矩阵, 每次选择一行或一列全部减$1$, 求最少次数使得矩阵全$0$ 贪心, $n>m$时每次取一列, 否则取一行 #inclu ...

  3. ELK搜索条件

    1.要搜索一个确切的字符串,即精确搜索,需要使用双引号引起来:path:”/app/logs/nginx/access.log” 2.如果不带引号,将会匹配每个单词:uid token 3.模糊搜索: ...

  4. C# 小数各种操作

    Math.Ceiling();//向上取整 //举一反三 Math.Floor();//向下取整 Math.Round();//四舍六入五取偶

  5. 数据多的时候为什么要使用redis而不用mysql?

    2018-06-28  136465569...  转自 庆亮trj21bc... 修改   微信 分享: Redis和MySQL的应用场景是不同的. 通常来说,没有说用Redis就不用MySQL的这 ...

  6. iOS - Objective-C 关联(objc_setAssociatedObject、objc_getAssociatedObject、objc_removeAssociatedObjects)

    关联是指把两个对象相互关联起来,使得其中的一个对象作为另外一个对象的一部分. 关联特性只有在Mac OS X V10.6以及以后的版本上才是可用的. 在类的定义之外为类增加额外的存储空间 使用关联,我 ...

  7. 十年感悟之 python之路

    本文由 简悦 SimpRead 转码, 原文地址 https://laisky.com/p/python-road/ Changelog: updated at 2019/9/6 一.概述 本文起源于 ...

  8. 2019.9.27,SAP成都研究院数字创新空间团队建设,射箭和游泳

    2019年9月27日,秋高气爽,SAP成都研究院数字创新团队全体成员又迎来了一次团队建设活动.这次的主题是:射箭. 在正式活动之前,大家先享用了一顿泰式海鲜火锅: 吃饱喝足之后,我们来到了名为&quo ...

  9. ResourceManager学习之ApplicationMaster,NodeManager管理

    ApplicationMaster管理部分主要由三个服务构成,分别是ApplicationMasterLauncher.AMLivelinessMonitor和ApplicationMasterSer ...

  10. servlet版本与tomcat版本对应关系,各版本web.xml头信息写法

    The mapping between the specifications and the respective Apache Tomcat versions is: Servlet Spec JS ...