TensorFlow(五):手写数字识别加强版
# 该版本的最终识别准确率达到98%以上 import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 载入数据集
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
# 每个批次的大小
batch_size=100
# 计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size # 定义两个placeholder
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32)
lr=tf.Variable(0.001,dtype=tf.float32) # 创建神经网络
# 使用正态分布以及非0的偏置值
# 输入层
W1=tf.Variable(tf.truncated_normal([784,500],stddev=0.1))
b1=tf.Variable(tf.zeros([500])+0.1)
L1=tf.nn.tanh(tf.matmul(x,W1)+b1)# 使用双曲正切的激活函数
L1_drop=tf.nn.dropout(L1,keep_prob) # 设置成多少个神经元工作,1为100% W2=tf.Variable(tf.truncated_normal([500,200],stddev=0.1))
b2=tf.Variable(tf.zeros([200])+0.1)
L2=tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)# 使用双曲正切的激活函数
L2_drop=tf.nn.dropout(L2,keep_prob) # 设置成多少个神经元工作,1为100% # 输出层
W3=tf.Variable(tf.truncated_normal([200,10],stddev=0.1))
b3=tf.Variable(tf.zeros([10])+0.1)
prediction=tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) # 使用交叉熵的情况
loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction)) # 使用adam优化器
train_step=tf.train.AdamOptimizer(lr).minimize(loss) # 初始化变量
init=tf.global_variables_initializer()
# 求最大值在哪个位置,结果存放在一个布尔值列表中
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))# argmax返回一维张量中最大值所在的位置
# 求准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) # cast作用是将布尔值转换为浮点型。
with tf.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_batch):
sess.run(tf.assign(lr,0.001*(0.98**epoch)))
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) # keep_drop:表示多少神经元工作,训练时减少神经元可以防止过拟合,如换成0.7
#求准确率
# 测试集
test_acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
learning_rate=sess.run(lr)
# 训练集
# train_acc=sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
print('Iter:'+str(epoch)+',Testing Accuracy:'+str(test_acc))
print('Iter:'+str(epoch)+',Training rate:'+str(learning_rate))
print()
TensorFlow(五):手写数字识别加强版的更多相关文章
- TensorFlow 之 手写数字识别MNIST
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for ...
- OpenCV+TensorFlow图片手写数字识别(附源码)
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...
- Tensorflow实战 手写数字识别(Tensorboard可视化)
一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打 ...
- python-积卷神经网络全面理解-tensorflow实现手写数字识别
首先,关于神经网络,其实是一个结合很多知识点的一个算法,关于cnn(积卷神经网络)大家需要了解: 下面给出我之前总结的这两个知识点(基于吴恩达的机器学习) 代价函数: 代价函数 代价函数(Cost F ...
- TensorFlow——MNIST手写数字识别
MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/ 一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...
- 【转】机器学习教程 十四-利用tensorflow做手写数字识别
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...
- 100天搞定机器学习|day39 Tensorflow Keras手写数字识别
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...
- Tensorflow 上手——手写数字识别
下面代码是Tensorflow入门教程中的代码,实现了一个softmax分类器. 第4行是将data文件夹下的mnist数据压缩包读取为tf使用的minibatch字典. 第6-11行定义了所用的变量 ...
- Softmax用于手写数字识别(Tensorflow实现)-个人理解
softmax函数的作用 对于分类方面,softmax函数的作用是从样本值计算得到该样本属于各个类别的概率大小.例如手写数字识别,softmax模型从给定的手写体图片像素值得出这张图片为数字0~9 ...
随机推荐
- PB Event ID 含义 内容浅析
Event ID 含义 内容浅析 event可以用pb自带的id,自动触发事件,而function就需要你去调用了,返回值多种多样 单选或多选按钮消息(前缀:pbm_bm) pbm_bmgetchec ...
- 在论坛中出现的比较难的sql问题:18(字符合并 整数解析星期几)
原文:在论坛中出现的比较难的sql问题:18(字符合并 整数解析星期几) 最近,在论坛中,遇到了不少比较难的sql问题,虽然自己都能解决,但发现过几天后,就记不起来了,也忘记解决的方法了. 所以,觉得 ...
- django css
1. settings.py最下方STATIC_URL下面补上 STATIC_URL = '/home/wjg/code/wblog/static/' STATIC_ROOT = os.path.jo ...
- 编写Postgres扩展之二:类型和运算符
原文:http://big-elephants.com/2015-10/writing-postgres-extensions-part-ii/ 编译:Tacey Wong 在上一篇关于编写Postg ...
- 使用 pykafka 进行消费
kafka连接脚本 环境:python3,用到的模块有 pykafka,kazoo # coding=utf-8 import pykafka class KafkaReaderThread(obje ...
- 13 个 JS 数组精简技巧
来自 https://juejin.im/post/5db62f1bf265da4d560906ab 侵删 数组是 JS 最常见的一种数据结构,咱们在开发中也经常用到,在这篇文章中,提供一些小技巧,帮 ...
- nginx的access_log与error_log
参考文章:https://juejin.im/post/5aa09bb3f265da238f121b6c 本篇文章主要介绍一下 nginx 服务器两种日志查看:access_log.error_lo ...
- pycharm git 用法总结
一.配置git 二.登录GitHub账号 三.创建git respository 四.提交文件 五.共享给GitHub 六.修改文件push到版本库 七.从版本库checkout 项目
- 关于MUI页面之间传值以及刷新的问题
一.页面刷新问题 1.父页面A跳转到子页面B,B页面修改数据后再跳回A页面,刷新A页面数据 (1).父页面A代码 window.addEventListener("pageflowrefre ...
- 【OF框架】使用OF框架创建应用项目
开始:准备工作 开发环境已经安装Visual Studio,包含Web开发负载.Python开发负载.NodeJs开发负载 开发环境已经安装Visual Studio Code 开发环境已经安装Nod ...