hdu1529 Cashier Employment[差分约束+二分答案]
这题是一个类似于区间选点,但是有一些不等式有三个未知量参与的情况。
依题意,套路性的,将小时数向右平移1个单位后,设$f_i$为前$i$小时工作的人数最少是多少,$f_{24}$即为所求。设$c_i$为第$i$小时可选人数,$lim_i$为要求人数下限。
- $0\le f_i-f_{i-1}\le c_i$,保证合法
- $i\ge 8$时,$f_i-f_{i-8}\ge lim_i$
- $i<8$时,由于环形,$f_i+(f_{24}-f_{i+16})\ge lim_i$,但这个不好处理,因为这不是一个二元关系,有第三个未知数参与。不过分析可知这些不等式中参与的第三个量是同一个,那么我们可以暴力枚举这个$f_{24}$,然后化为二元,再建图看合不合法。
- 使用上一条的方法时,注意限制$f_{24}-f_0=枚举的数$
事实上,答案满足可二分性,于是改为二分答案,跑正环检验即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define dbg(x) cerr << #x << " = " << x <<endl
#define dbg2(x,y) cerr<< #x <<" = "<< x <<" "<< #y <<" = "<< y <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=,INF=0x3f3f3f3f;
struct thxorz{int to,nxt,w;}G[N];
int Head[],tot;
int cnt[],lim[];
int T,n,L,R;
inline void Addedge(int x,int y,int z){G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot,G[tot].w=z;}
int dis[],inq[],rel[];
#define y G[j].to
inline bool spfa(){
queue<int> q;
for(register int i=;i<=;++i)q.push(i),dis[i]=,inq[i]=,rel[i]=;
while(!q.empty()){
int x=q.front();q.pop();
inq[x]=;//dbg(x);
for(register int j=Head[x];j;j=G[j].nxt)if(MAX(dis[y],dis[x]+G[j].w)){
rel[y]=rel[x]+;if(rel[y]>=)return ;//dbg(y);
if(!inq[y])inq[y]=,q.push(y);
}
}
return ;
}
#undef y
inline bool check(int mid){
memset(Head,,sizeof Head),tot=;
for(register int i=;i<=;++i)Addedge(i-,i,),Addedge(i,i-,-cnt[i]);
for(register int i=;i<=;++i)Addedge(i-,i,lim[i]);
for(register int i=;i<;++i)Addedge(i+,i,lim[i]-mid);
Addedge(,,mid),Addedge(,,-mid);
return spfa();
} int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(T);while(T--){
for(register int i=;i<=;++i)read(lim[i]);
memset(cnt,,sizeof cnt);
read(n);for(register int i=,x;i<=n;++i)read(x),cnt[x+]++;
L=,R=n+;//dbg(check(1)),dbg(check(2)),dbg(check(3)),dbg(check(4)),dbg(check(5));
while(L<R){
int mid=L+R>>;
if(check(mid))R=mid;
else L=mid+;
}
if(L<=n)printf("%d\n",L);
else puts("No Solution");
}
return ;
}
一道弱智小题耗我半小时。。
RE记录:差分约束题建边老是容易在Addedge处写倒掉。注意本题$n$的意味,不要混淆成点数。
总结:第三元参入不等式,二分答案检验。
hdu1529 Cashier Employment[差分约束+二分答案]的更多相关文章
- poj 1275 Cashier Employment - 差分约束 - 二分答案
A supermarket in Tehran is open 24 hours a day every day and needs a number of cashiers to fit its n ...
- POJ1275/ZOJ1420/HDU1529 Cashier Employment (差分约束)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 题意:一商店二十四小时营业,但每个时间段需求的出纳员不同,现有n个人申请这份工作, ...
- 【POJ1275】Cashier Employment 差分约束
[POJ1275]Cashier Employment 题意: 超市经历已经提供一天里每一小时需要出纳员的最少数量————R(0),R(1),...,R(23).R(0)表示从午夜到凌晨1:00所需要 ...
- HDU.1529.Cashier Employment(差分约束 最长路SPFA)
题目链接 \(Description\) 给定一天24h 每小时需要的员工数量Ri,有n个员工,已知每个员工开始工作的时间ti(ti∈[0,23]),每个员工会连续工作8h. 问能否满足一天的需求.若 ...
- Cashier Employment 差分约束
题意:有一个超市需要一些出纳员,已给出这个超市在各个时间段(0-1,1-2,2-3...共24个时间段)至少需要的出纳员数目,现在前来应聘有n个人,每个人都有一个固定的开始工作的时间,这也意味着从这个 ...
- POJ1275 Cashier Employment(差分约束)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9078 Accepted: 3515 Description A sup ...
- [HDU 1529]Cashier Employment(差分约束系统)
[HDU 1529]Cashier Employment(差分约束系统) 题面 有一个超市,在24小时对员工都有一定需求量,表示为\(r_i\),意思为在i这个时间至少要有i个员工,现在有n个员工来应 ...
- POJ1275 Cashier Employment[差分约束系统 || 单纯形法]
Cashier Employment Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7997 Accepted: 305 ...
- BZOJ 4326 NOIP2015 运输计划(树上差分+LCA+二分答案)
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MB Submit: 1388 Solved: 860 [Submit][Stat ...
随机推荐
- Excel小技巧(随机点名)
如图,想要做一个随机点名的表格,同样可以石头剪刀布的场合,随机选人. 如何做呢? 第一步,填好想要的数据 第二步,在空的位置输入=INDIRECT("A"&RANDBETW ...
- spring_mvc入门项目的小总结
1.先搭建一个maven的web项目 ,然后把文件夹完善一下,创建一个java的文件夹和resource的问件夹,并指定他们各自的功能. 导入pom.xml文件的依赖 <properties&g ...
- bzoj 4736: 温暖会指引我们前行 (LCT 维护最大生成树)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4736 题面: 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出 ...
- (模板)hdoj5977 Garden of Eden(点分治)
题目链接:https://vjudge.net/problem/HDU-5977 题意:给一颗树,每个结点上有一个权值a[i],a[i]<=10,求有多少条路径满足这条路径上所有权值的结点都出现 ...
- Linux安装redis logstash
一.安装redis tar -zxvf redis-3.2.8.tar.gz cd redis-3.2.8 make && make install PREFIX=/usr/loca ...
- plsql软件使用手册
记录登陆密码及用户名
- 脚本(bat、shell)调用conda
官网说明:https://docs.conda.io/projects/conda/en/latest/user-guide/troubleshooting.html#using-conda-in-w ...
- joda-time使用
pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...
- Jmeter之HTTP配置元件
前言:在测试一个项目中,HTTP请求的IP.协议和默认编码等大多数情况下都是相同的.线程之间会相互调用/请求Cookie...... 所以,推荐添加这四个配置元件在所有请求之前.(BadBoy录制的脚 ...
- JS基础_if练习一
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...